搜索热:228 s136
扫一扫 加微信
首页 > 新闻资讯 > 科技前沿 > 消息正文
首页 > 新闻资讯 > 科技前沿 > 消息正文
金属钝化膜击破机制研究取得进展
发布:haige__   时间:2018/9/10 23:40:57   阅读:201 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter
中国科学院金属研究所固体原子像研究部研究员马秀良、副研究员张波和博士王静等人组成的介质条件下材料电子显微学研究小组在原子尺度下直接获得金属表面超薄钝化膜的剖面显微图像,并揭示了氯离子击破钝化膜的作用机制。7月2日,英国《自然-通讯》(Nature Communications)在线发表了该项研究成果。9月7日,美国《科学》(Science)周刊在相关专栏以Tracking corroding chloride 为题对该成果进行了推介,认为“利用透射电子显微技术对氯离子传输的直接观测加深了对金属腐蚀过程的理解”。

金属表面几个纳米厚的钝化膜赋予其优良的抗均匀腐蚀能力,然而,在抗均匀腐蚀的同时,金属的局部点状腐蚀(即“点蚀”)却难以避免。点蚀的发生起始于材料表面,最终向材料表面以下的纵深方向迅速扩展。因此,点蚀破坏具有极大的隐蔽性和突发性,特别是在石油、化工、核电等领域,点蚀容易造成金属管壁穿孔,使大量油、气泄漏,甚至造成火灾、爆炸等灾难性事故。

点蚀的发生起始于钝化膜的局部破损,是材料科学与工程领域中的经典问题之一。由于钝化膜非常薄(3~5nm),对其结构的直接观测极具挑战性,探究氯离子导致的结构演变则更为困难。自上世纪六十年代开始至今,材料科学家普遍采用表面谱学等间接的实验手段研究氯离子击破钝化膜的机制,并因此提出了多种模型和假说,但尚无定论。其争论的核心问题是氯离子在钝化膜中的存在位置及作用方式。

金属所固体原子像研究部界面结构研究团队长期致力于材料基础科学问题的电子显微学研究,经过多年的学术积累,在解决上述基础科学难题方面近来取得突破。他们利用像差校正透射电子显微技术证实,钝化膜由极其微小的具有尖晶石结构的纳米晶和非晶组成;基于定量电子显微学分析并结合相应的理论计算,发现氯离子沿着纳米晶和非晶之间的特殊“晶界”并以贯穿通道为路径,传输至钝化膜与金属之间的界面。到达界面处的氯离子造成基体一侧的晶格膨胀、界面的起伏以及膜一侧的疏松化,并在界面处引入了拉应力。起伏界面的凸起在应力的作用下最终成为钝化膜发生破裂的起始位置。这一研究成果为揭示氯离子与金属钝化膜的交互作用机制提供了直接的实验证据,为修正和完善数十年来基于模型和假说所建立起来的钝化膜击破理论提供了原子尺度的结构信息。

该项研究得到国家自然科学基金、中科院前沿科学重点研究项目以及金属所创新基金重点项目等资助。

文章链接 :http://www.cas.cn/syky/201809/W020180910307955512018.pdf

《科学》推介链接 :http://www.cas.cn/syky/201809/W020180910307955963354.pdf
 
 
图1 钝化膜中晶体/非晶界面作为氯离子在膜中的传输通道。(a)沿基体[001]晶带轴的TEM高分辨像显示钝化膜主要为非晶态,其中包含有一些纳米晶;(b)界面处TEM高分辨像的局部放大图;(c)氯离子在钝化膜中的晶体、非晶及二者界面处进行扩散所需能量的第一原理计算。
图2  氯离子进入并穿透钝化膜,富集在钝化膜/基体界面处。不同形成条件下钝化膜的元素面分布分析,(a)在0.5 mol L-1 H2SO4 溶液中640 mV / SHE 下恒电位钝化30分钟; (b) 在0.5 mol L-1 H2SO4 + 0.3 mol L-1 NaCl 溶液中640 mV / SHE 下恒电位钝化30分钟; (c) 先在0.5 mol L-1 H2SO4 溶液中640 mV / SHE 下恒电位钝化30分钟,然后向溶液中加入NaCl溶液。
图3  氯离子作用于界面导致基体/钝化膜界面的起伏。(a-b)沿基体[001]及[110]带轴的TEM高分辨像,钝化膜为在0.5 mol/ L H2SO4 溶液中生长在(110)及(001)面上;(c)沿基体[001]带轴的TEM高分辨像,钝化膜为在0.3 mol L-1 NaCl + 0.5 mol L-1 H2SO4 溶液中生长在(110)面上;(d)沿基体[110]带轴的TEM高分辨像,钝化膜为先在0.5 mol L-1 H2SO4 溶液中形成,然后向溶液中加入NaCl溶液。

来源:鲁班科学网
相关信息
   标题 相关频次
 《腐蚀与防护》特别推出:缓蚀剂专题报道 ——报道生产更安全、更高效缓蚀剂的创新性行为
 2
 Nature:电镜分辨率的吉尼斯世界纪录
 2
 钢筋混凝土的测试样品往往太小
 2
  “顽固的”通用电气公司科学家创造了新的节能材料
 1
  “网状的碳”是更快DNA测序的关键
 1
  “微梳理”有效提高碳纳米管性质
 1
  2015年新色谱柱及配件大盘点之超临界流体色谱法
 1
  3D打印在人体器官应用中的重大突破
 1
  MoS2纳米“三明治”提升充电电池性能
 1
  电子显微镜首次产生彩色图像
 1
  干货:铸件中六大常见缺陷的产生原因及防治方法
 1
 ?材料的静电设计:一种全新的方法
 1
 ?对于碳的多事之秋,这是一种革命性的新材料——一种人人都用的起的超级过滤器
 1
 ?海水中管道腐蚀介绍
 1
 ?重要埋地管道腐蚀防护研讨会 赞助及商业合作机会
 1
 “狗鼻子”探测器:让警犬面临下岗
 1
 “国六标准”来了致使“汽油质量牌照”投放量锐减,液态石油中硫含量应声降低
 1
 “海龙11000”完成深海5630米试潜
 1
 “金属材料在线检测技术和检测设备”专题报道重磅推出
 1
 “康师傅”陷馊水油中遭“灭顶” 食品安全民生大计勿忽视
 1
 “穹顶之下”的我们和我们的后代?“绿色源头行动”联合推广倡议书
 1
 “新视野”号拍到“天涯海角”照片
 1
 “自带雨衣”的电磁屏蔽材料
 1
 《腐蚀与防护》杂志投稿谨防诈骗公告
 1
 《腐蚀与防护》杂志推出核电设备材料防护专题报道
 1
 《腐蚀与防护》杂志招聘启事
 1
 《理化检验-物理分册》带你去看Olympus BX53M/BXFM工业正置显微镜发布会
 1
 1+1=2?超声波设备+探头的组合性能如何测?
 1
 13.7米毫米波射电望远镜:在世界屋脊描绘银河画卷
 1
 2015第二届海洋材料腐蚀与防护大会论文将择优选入中文核心期刊《腐蚀与防护》
 1
 2015年新色谱柱及配件大盘点
 1
 2015年新色谱柱及配件大盘点之反相色谱法
 1
 2015年新色谱柱及配件大盘点之辅助设备
 1
 2015年新色谱柱及配件大盘点之离子色谱法
 1
 2015年新色谱柱及配件大盘点之亲水作用色谱法
 1
 2015年新色谱柱及配件大盘点之生物色谱法
 1
 2015年新色谱柱及配件大盘点之手性化合物分离色谱法
 1
 2016船舶与海工防腐蚀技术交流会盛大召开!
 1
 2016年HPLC热门话题预测——为什么有效的HPLC分离对于高复杂系统的分析是至关重要的?
 1
 2016年美国光谱从业人员薪酬调查报告
 1
 2017年《腐蚀与防护》全本FLASH期刊
 1
 2017十大新兴技术:从干燥空气提取饮用水到人造树叶
 1
 2018年《腐蚀与防护》杂志专题报道征稿启事
 1
 2026年,全球涡流检测设备市场规模将达到5.38亿美元
 1
 3D X射线检查系统在3D打印部件质量控制中的运用
 1
 3D打印VS生物打印,差异在哪里?
 1
 3D打印出更强大步枪
 1
 3D打印干的那些事
 1
 3D打印是碳纤维零件变便宜的关键吗?
 1
 3D打印新型气凝胶提升储能技术
 1