搜索热:程丽杰 晶间腐蚀
扫一扫 加微信
首页 > 新闻资讯 > 行业动态 > 消息正文
首页 > 新闻资讯 > 行业动态 > 消息正文
连续制备碳纳米管透明导电薄膜研究取得进展
发布:Iron_MAN10   时间:2020/10/12 15:13:51   阅读:281 
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

透明导电薄膜(TCF)作为一种重要的光电材料,在触控屏、平板显示器、光伏电池、有机发光二极管等电子和光电子器件领域有着广泛应用。目前,氧化铟锡(ITO)是工业中应用最为广泛的透明导电薄膜材料。常用的ITO制备工艺涉及高温高真空的耗能且工艺复杂。另外,ITO是脆性金属氧化物且铟资源稀缺,越来越难以满足科技发展的需求,特别是针对新一代柔性电子器件。单壁碳纳米管具有优异的力学、电学和光学性质,因此被认为是最具竞争力的柔性透明导电材料的候选材料之一。碳纳米管透明导电膜的制备方式主要分为湿法和干法两种。湿法是指将碳纳米管分散在合适的溶剂中,通过抽滤、浸涂、喷涂、旋涂等方法沉积在相应基底上;干法是指直接通过化学气相沉积(CVD)生长碳纳米管薄膜或者由碳纳米管阵列拉丝成薄膜。

中国科学院物理研究所/北京凝聚态物理国家研究中心先进材料与结构分析实验室A05组长期致力于碳纳米结构的制备、物性与应用基础研究。该课题组研究人员发展出一种新的连续直接制备大面积自支撑的透明导电碳纳米管(CNT)薄膜的方法——吹胀气溶胶法(BACVD),并申请了发明专利。基于BACVD,CNT TCFs的产量可达每小时数百米且碳转化率(从碳源转化到CNT的比率)可超过10%,比传统浮动催化化学气相沉积法(FCCVD)制备CNT TCFs的相应指标高出3个数量级。

BACVD是在吹塑薄膜制备工艺和浮动催化化学气相技术启发下发展出来的,其机理是利用特殊的CNT合成反应器,在FCCVD法制备CNT的过程中,实现“吹泡”的过程。具体制备过程包括两步,首先稳定吹胀CNT的气溶胶膜泡,然后通过CNT生长过程中CNT长度的增加将气溶胶膜泡“固化”为气凝胶。最后CNT透明导电薄膜随着载气从反应器末端喷出。研究团队深入研究了制备的过程,给出了BACVD法的广义相图。根据具体的制备条件,相图分为四个区域,分别对应不同的产物。该相图对于进一步理解BACVD和薄膜性能提升具有指导意义。另外,该方法可在无氢气的条件下实现薄膜的合成,意味着制备过程安全且高效。所制备透光率90%的薄膜,经过简单的掺杂,面电阻约40 ohm/sq,表现出优良的光电性能。针对BACVD 所制备的超薄CNT薄膜,研究人员设计了“卷式 (roll) ”收集装置,实现了薄膜的连续在线收集。相关研究结果发表在Advanced Materials上。

除CNT TCFs,研究团队还利用该方法进行了高导电、高强度纤维的研究。将所制备筒状薄膜通过液态皱缩剂可直接转化为连续的CNT纤维。然后,通过酸处理,纤维性能得到大幅提升。特别是氯磺酸处理后,纤维的强度达到2 GPa,同时电导率达到4.3 MS/m。相关研究发表在Chinese Physics B上。BACDV法作为一种新制备CNT薄膜的方法,在基础研究和产业应用中都有重要意义。该工作提出了一种新的CNT宏观体的构筑思路——首先利用气流辅助实现对短CNT气溶胶特定形态的构筑,然后结合CNT的合成,利用碳管长度的持续增加,实现气溶胶的固化。此外,超高的产量和碳转化率对CNT的产业化具有重要意义,特别是对于CNT作为透明导电薄膜、电极和纤维等“工程材料”。

该工作得到科学技术部、国家自然科学基金委和中科院战略性先导科技专项(A类)等的支持。

论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202004277
 

图1.CNT薄膜的连续制备(左)和收集(右)


图2.BACVD 方法相图(左),不同条件所制备CNT样品的性能对比(中),BACVD法与传统FCCVD法制备CNT透明导电薄膜的产量及碳转化率的对比(右)。


图3.BACVD 法制备CNT薄膜的性能和微观形貌:透光率与面电阻(左上),稳定性(右上),扫描电子显微镜(左下)和透射电子显微镜(右下)图像。


图4.CNT纤维的连续制备与收集(左)及其宏观(中)与微观(右)形貌


来源: 物理研究所
 
相关信息
   标题 相关频次
 连续制备碳纳米管透明导电薄膜取得进展
 2
  高密度半导体阵列碳纳米管研究获突破
 1
  碳家族再添新成员 由18个原子组成的环碳问世
 1
 #电子材料周报#电子高速公路,想象你的电脑可以被卷起来
 1
 #高分子材料周报#大显神通的木纤维素
 1
 #新能源周报#能源与设备间正走向无线化
 1
 “最黑材料”可吞噬绚丽钻石
 1
 《JACS》:中科大合成出首例单一手性指数单壁碳纳米管长共轭链段
 1
 《Nature》:实现量产!剪切流诱导超强纳米复合材料
 1
 《Nature》重大里程碑:史上最大碳纳米管芯片!
 1
 《Nature》子刊发表我国学者碳纳米材料生物毒性重磅文章
 1
 《Nature》子刊重磅:北大彭练矛课题组制备出高性能碳管晶体管!
 1
 《Science》子刊:高性能碳纳米管透明导电薄膜研究取得进展
 1
 《先进功能材料》:西安交大奠定规模化制备高质量石墨烯基础
 1
 《自然》:蓝绿藻+碳纳米管造生物光伏电池可经生物降解
 1
 《自然》《科学》一周(10.12-10.18)材料科学前沿要闻
 1
 《自然》杂志评出2015年度十大人物 两中国科学家上榜
 1
 【NS精读】金属基底焕生的碳纳米管
 1
 1nm晶体管面世,摩尔定律有救?
 1
 2019年度国家科学技术奖揭晓,石墨烯、碳纳米管榜上有名
 1
 3D打印碳纳米管与聚合物复合材料的焊接
 1
 3D碳纳米管计算机芯片问世
 1
 90%纯度碳纳米管水平阵列合成 新方法具有发展空间
 1
 Adv. Mater.:分子-石墨烯杂化材料构筑高灵敏压力传感器
 1
 CNTs/AZ91复合材料的摩擦磨损性能
 1
 IBM曹庆-Science:造出世界上最小的碳纳米管晶体管
 1
 IBM碳纳米管商用技术取得重大突破
 1
 JACS:金属有机骨架基碳纳米管的定向形成
 1
 MIT研发通过燃料包覆碳纳米管燃烧发电
 1
 NASA探索利用碳纳米管进行航空航天应用
 1
 NASA运用纳米技术降低航天系统重量
 1
 Nature Materials:富勒烯封装调制单个碳纳米管的热和热传输性能
 1
 Nature Nanotechnology:6月纳米前沿精选科研成果
 1
 Nature子刊:解思深院士-网状碳纳米管结构制作高性能紧凑柔性热电模块
 1
 OCSiAl碳纳米管改性沥青混凝土成功通过实际道路测试
 1
 Science:超耐久超长碳纳米管,“太空电梯”的希望
 1
 TUBALL单壁碳纳米管助力电池能量密度发展
 1
 包覆镍CNTs/AM60复合材料铸态显微组织与力学性能
 1
 包覆镍的碳纳米管增强AZ91镁基复合材料的显微组织与力学性能
 1
 北大超薄柔性电子器件研究取得重要进展
 1
 北大研发石墨烯柔性透明电极连续卷对卷生产新工艺
 1
 北京大学研制成功10nm碳纳米管CMOS器件
 1
 比最黑还要黑10倍的材料诞生了!可吸收99.995%入射光
 1
 超60GPa!科学家首次测得碳纳米管拉伸强度 建造太空梯不是梦
 1
 超轻碳纳米管线材 可承受高于自身1000倍重量
 1
 超顺排碳纳米管材料 引发全球轰动
 1
 触摸屏制作的新材料
 1
 催化热解三聚氰胺合成竹节状氮掺杂碳纳米管
 1
 电沉积钴磷基碳纳米管复合镀层
 1
 顶刊动态 | Nature子刊/AM/JACS/ACS Nano等生物材料最新学术进展汇总
 1