搜索热:微弧氧化 标准
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
埋地管道防腐蚀层阴极剥离影响因素
          
Influencing Factors on Cathodic Disbonding of Buried Pipeline Coatings

摘    要
防腐蚀层和阴极保护的联合防护, 是目前防止埋地油气管道受到腐蚀破环的最佳保护方法。但在一定条件下, 阴极保护会使涂层与基材之间发生阴极剥离, 造成涂层失效, 导致能量和金属材料的损失, 同时加大了阴极保护工程设计及维护过程中的困难和不确定性。因此, 当防腐蚀层与阴极保护共同使用时, 防腐蚀层抗阴极剥离的性能就显得尤为重要。本文总结了防腐蚀层性能和阴极保护电位等因素对埋地管道防腐蚀层阴极剥离的发生和发展的影响, 介绍了国内外对管道防腐蚀层阴极剥离的研究现状。
标    签 埋地管道   防腐蚀层   阴极保护   阴极剥离   buried pipeline   anticorrosive coating   cathodic protection   cathodic disbonding  
 
Abstract
The best protection method for preventing buried pipelines from corrosion is the combined protection of anticorrosive coating and cathodic protection. But in some conditions, the cathodic protection can cause cathodic disbonding between the coating and base material, which will lead to the coating failure and wasting of energy and metal, and increase much difficulty and uncertainty in the cathodic protection engineering design and maintenance process. Therefore, when the anticorrosive coating and the cathodic protection are used together, the coating of anti-cathode stripping is particularly important. This paper summarizes the influence of coating performance, cathodic protection potential and other factors on the occurrence and development of the coating cathodic disbonding, and introduces the research progress of the pipeline coating's cathodic disbonding at home and abroad.

中图分类号 TG174.4 U177

 
  中国光学期刊网论文下载说明


所属栏目 专论

基金项目 四川理工学院研究生创新基金项目(y2010021)

收稿日期 2012/2/6

修改稿日期

网络出版日期

作者单位点击查看


备注熊娟, 工程师, 硕士,

引用该论文: XIONG Juan,ZHANG Ting,XU Hong-chuan,GONG Min,ZHANG Wen-yan. Influencing Factors on Cathodic Disbonding of Buried Pipeline Coatings[J]. Corrosion & Protection, 2013, 34(1): 60


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】武烈. 我国阴极保护技术的发展及其高新技术化的探索[J]. 腐蚀与防护, 2004, 27(3):93-101.
 
【2】刘新. 防腐蚀涂料与涂装应用[M]. 北京: 化学工业出版社, 2008(4):493.
 
【3】Legghe E, Joliff Y. Computational analysis of internal stresses generated during the manufacturing process of a monolayer or three-layer pipeline coating[J]. Computation Materials Science, 2010, 48(2):360-365.
 
【4】蔡克, 常大伟. 油气输送管3PE防腐蚀层抗阴极剥离性能影响因素研究[J]. 焊管, 2010, 3(4):26-33.
 
【5】张其滨, 刘金霞, 赫连建峰, 等. 管道3EP涂层的阴极剥离性能研究[J]. 腐蚀与防护, 2006, 27(7):331-333.
 
【6】McHattie J S, Perez I L, Kehr J A. Factors affecting cathodic disbondment of epoxy coatings for steel reinforcing bars[J]. Cement & Concrete Composites, 1996, 18:93-103.
 
【7】潘家华. 我国天然气管道工业的发展前景[J]. 油气储运, 2006, 25(8):1-5.
 
【8】冯耀荣. 当前国际油气管道工业的发展动向[J]. 油气储运, 2001, 24(7):1-4.
 
【9】Fessler R, Markworth A J, Parkins R N. Cathodic protection levels under disbonded coatings[J]. Corrosion, 1983, 39(1):20-25.
 
【10】Chen X, Li X G. Effect of cathodic protection on corrosion of pipeline steel under disbanded coating[J]. Corrsion Science, 2009, 51(9):2242-2245.
 
【11】Toncre A C. On achieving polarization beneath unbounded pipe coatings[J]. Materials Performance, 1984, 23(8):22-27.
 
【12】Oliveira C G, Ferreira M G S. Ranking high-quality paint systems using EIS. Part Ⅱ: Defective Coatings[J]. Corrosion Science, 2003, 45(1):139-147.
 
【13】Luo J L, Lin C J. Cathodic disbanding of a thick polyurethane coating from steel in sodium chloride solution[J]. Progress in Organic Coatings, 1997, 31(2):289-295.
 
【14】Perdomo J J, Song I. Chemical and electrochemical conditions on steel under disbanded coatings the effect of applied potential solution resistivity crevice thickness and holiday size[J]. Corrosion Science, 2000, 42(8):1389.
 
【15】王志远, 许海波. 土壤环境中阴极保护电位对涂层的影响[J]. 腐蚀与防护, 2005, 20(1):43-46.
 
【16】张丰, 赵君, 刘玲莉, 等. 管道3PE防腐蚀层技术标准对比分析[J]. 油气储运, 2009, 28(7):48-51.
 
【17】Roy D, Simon G P, Forsyth M. Towards a better understanding of the cathodic disbondment performance of polyethylene coatings on steel[J]. Advances in Polymer Technology, 2002, 21(1):44-58.
 
【18】Harun M K, Marsh J, Lyon S B. The effect of surface modification on the cathodic disbondment rate of epoxy and alkyd coatings[J]. Progress in Organic Coatings, 2005, 54:317-321.
 
【19】Zhang Q B, Liu J X, Jian F, et al. A study on cathodic disbanding of 3PE pipeline coating[C]//4th Asian-Pacific Corrosion Control Conference, Shanghai:2006.
 
【20】Jack T R, Van Boven G, Wilmott M J, et al. Evaluation of coating performance after exposure to biologically active soils[J]. Materials Performance, 1996, 35(3):39-45.
 
【21】GB/T 23257-2009. 埋地钢质管道聚乙烯防腐蚀层[S].
 
【22】SY/T 0036-2000. 埋地钢质管道强制电流阴极保护设计规范[S].
 
【23】GB/T 21448-2008. 埋地钢质管道阴极保护技术规范[S].
 
【24】涂明跃, 葛艾天. 浅谈3层PE管道阴极保护电位对防腐蚀层阴极剥离的影响[J]. 管道, 2008, 16(1):41-43.
 
【25】魏强邦, 周永峰. 玻璃鳞片对环氧涂料抗阴极剥离性能的影响[J]. 腐蚀与防护, 2008, 29(8):490-491.
 
【26】张其滨, 张莉, 李爱贵, 等. 基材变形对3PE防腐蚀层性能的影响[J]. 石油工程建设, 2009, 35(6):33-35.
 
【27】Jung-Gu Kim, Yong-Wook Kim. Cathodic protection criteria of thermally insulated pipeline buried in soil[J]. Corrosion Science, 2001, 43(12):2011-2021.
 
【28】Worsley D A, Williams D, Ling J S G. Mechanistic changes in cut-edge corrosion induced by variation of organic coating porosity[J]. Corros Sci, 2001, 43(13):2335-2348.
 
【29】Leng A, Streckel H, Stratmann M. The delamination of polymeric coatings from steel Part 3: Effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal polymer interface[J]. Corros Sci, 1999, 41(3):599.
 
相关信息
   标题 相关频次
 3PE防腐蚀层联合阴极保护对管道的保护效果
 10
 埋地管道3PE防腐蚀层阴极剥离产物分析
 8
 埋地保温管线外加电流阴极保护适应性
 6
 瞬间断电法、极化探头法在输气管道阴极保护现场的适应性
 6
 钢质套管对埋地管道阴极保护的影响
 4
 管道3PE涂层的阴极剥离性能研究
 4
 绝缘防腐蚀层缺陷对油气管线阴极保护中IR降的影响
 4
 硫酸介质中竹叶提取物的阳极脱附行为
 4
 埋地带保温层管线阴极保护技术的实施方式——保温层内置牺牲阳极技术
 4
 埋地钢质管道防腐蚀层检测中地表电位的ANSYS模拟
 4
 密间隔电位测量(CIPS)中通断周期对埋地管道阴极保护系统的影响
 4
 我国埋地钢质管道使用环氧粉末涂层的情况
 4
 用电化学方法研究X80管线钢的阴极保护参数
 4
 定向钻穿越管道防腐蚀层及阴极保护的评价方法
 3
 某埋地管道阴极保护测量与腐蚀原因分析
 3
 涂层孔隙率对钢质套管穿越段管道阴保电位影响规律的数值模拟
 3
 无溶剂环氧涂料的抗阴极剥离性能
 3
 用直流电位梯度法测量埋地管道防护层缺陷位置的模拟试验
 3
 珠海-中山天然气埋地管线的腐蚀与防护
 3
 2205双相不锈钢在卤水环境中的腐蚀行为
 2
 3A21铝合金在乙二醇水溶液中的腐蚀行为
 2
 3-甲基-2-噻唑硫酮对HCl溶液中碳钢的缓蚀作用
 2
 5083铝壳艇外加电流阴极保护系统研制
 2
 ACVG与CIPS技术在埋地管道防腐蚀评价中的组合应用
 2
 HEDP对1Cr18Ni9Ti在硝酸中腐蚀行为的影响
 2
 HVDC影响下管道强排流式阴极保护系统的开发
 2
 NACE标准SP0169中的-850 mV电位准则
 2
 PPy/α-Fe2O3复合材料的合成及其耐蚀性
 2
 SF6示踪法在埋地管道检漏中的应用
 2
 TA2在卤水环境中的缝隙腐蚀电化学行为
 2