搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
纳米TiO2/CdSe量子点的制备及其结构表征
          
Preparation and Structural Characterization of CdSe Quantum Dots Doped TiO2 Nanocomposites

摘    要
用水热方法制备了CdSe量子点(CdSe QDs)并通过溶胶-凝胶法制备了量子点掺杂改性的纳米TiO2复合物。运用多种方法对此复合物进行表征,并对其光催化性能进行研究。结果表明:① 在其制备焙烧过程中,CdSe QDs已掺杂进入TiO2纳米颗粒中形成纳米复合物;② CdSe QDs的引入增强了TiO2的吸光性,改善了TiO2在可见光区的吸光效率;③ TiO2的原始晶体结构在焙烧过程中发生变化,形成了两种晶相的混晶,有利于其光催化活性的改善;此外纳米TiO2复合物的表面电子结构以及吸附性能等对其光催化作用也有协同作用,使其催化性能进一步提高。
标    签 纳米二氧化钛   CdSe量子点   掺杂   表征   Nanoparticles of TiO2   CdSe quantum dots   Doping   Characterization  
 
Abstract
Cadmium-selenide quantum dots (CdSe QDs) were prepared by the hydrothermal method, and the CdSe QDs were doped in nano-TiO2 by the sol-gel method. Photo-catalytic property and micro-structure of the nano-composite were studied and characterized by various methods. It was shown that: ① CdSe QDs were doped and enters into nanoparticles of TiO2 during calcination in its prepartion to form nanocomposite;② the photo-absorptivity of TiO2 was enhanced, and its photoabsorption capacity in the visible region was improved;③ inherent crystal structure of TiO2 was transformed into mixed crystal structure of 2 crystal-phases during the calcination process, and this phenomenon was believed to be beneficial to improve its activity of photo-catalysis. In addition, the photocatalytic property of the nanocomposite was improved further by the synergetic action of the surface-electronic structure and the adsorptivity capacity of the nano-composite.

中图分类号 O657

 
  中国光学期刊网论文下载说明


所属栏目 试验与研究

基金项目 国家科技部973计划(2009CB939705);国家自然科学基金青年基金项目(11405050,8100704);湖北省教育厅重点项目(D20142804);国家级大学生创业训练和创业实践项目(201310927023,201210927033);湖北科技学院专项基金(ZX1022,ZX1102,PY1103,BK1103,ZX1203)

收稿日期 2013/11/17

修改稿日期

网络出版日期

作者单位点击查看


备注李月生(1979-),男,湖北鄂州人,副教授,博士,主要从事功能材料及其性能研究。

引用该论文: LI Yue-sheng,GUO Qian-rui,SUN Shao-fa,ZHAO Long. Preparation and Structural Characterization of CdSe Quantum Dots Doped TiO2 Nanocomposites[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2014, 50(11): 1329~1337
李月生,郭倩蕤,孙绍发,赵龙. 纳米TiO2/CdSe量子点的制备及其结构表征[J]. 理化检验-化学分册, 2014, 50(11): 1329~1337


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LI Yue-sheng, JIANG Feng-lei, LIU Yi, et al. Enhanced photocatalytic activities of TiO2 nanocomposites doped with water-soluble mercapto-capped CdTe quantum dots[J]. Appl Catal B, 2010,101:118-129.
 
【2】KIM J Y, CHOI S B, HONG K S. Surfactant-assisted shape evolution of thermally synthesized TiO2 nanocrystals and their applications to efficient photoelectrodes[J]. Langmuir, 2009,25(9):5348-5351.
 
【3】ROBEL I, SUBRAMANIAN V, KUNO M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films[J]. J Am Chem Soc, 2006,128:2385-2393.
 
【4】MORA-SERO I, LIKODIMOS V, GIMNEZ S, et al. Fast regeneration of CdSe quantum dots by Ru dye in sensitized TiO2 electrodes[J]. J Phys Chem C, 2010,114:6755-6761.
 
【5】LESCHKIES K S, DIVAKAR R, BASU J, et al. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices[J]. Nano Lett, 2007,7:1793-1798.
 
【6】LOPEZ-LUKE T, WOLCOTT A, XU L P, et al. Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications[J]. J Phys Chem C, 2008,112:1282-1285.
 
【7】LEE H J, YUM J H, LEVENTIS H C, et al. Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator[J]. J Phys Chem C, 2008,112:11600-11608.
 
【8】LI Gui-sheng, ZHANG Die-qing, YU J C. A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2[J]. Environ Sci Technol, 2009,43:7079-7085.
 
【9】YU J C, WU Ling, LIN Jun, et al. Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst[J]. Chem Commun, 2003,13:1552-1553.
 
【10】HO W K, YU J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles[J]. J Molecu Catal A: Chemical, 2006,247:268-274.
 
【11】SUN Wen-tao, YU Yuan, PAN Hua-yong, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. J Am Chem Soc, 2008,130(4):1124-1125.
 
【12】BANERJEE S, MOHAPATRA S K, DAS P P, et al. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS[J]. Chem Mater, 2008,20:6784-6791.
 
【13】FAN S Q, KIM D, KIM J J, et al. Highly efficient CdSe quantum-dot-sensitized TiO2 photoelectrodes for solar cell applications[J]. Electrochem Commun, 2009,11:1337-1339.
 
【14】JIN Sheng-ye, LIAN Tian-quan. Electron transfer dynamics from single CdSe/ZnS quantum dots to TiO2 nanoparticles[J]. Nano Lett, 2009,9:2448-2454.
 
【15】SAMBUR J B, PARKINSON B A. CdSe/ZnS core/shell quantum dot sensitization of low index TiO2 single crystal surfaces[J]. J Am Chem Soc, 2010,132:2130-2131.
 
【16】SEABOLD J A, KARTHIK S, RUDEGER H T. Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays[J]. Chem Mater, 2008,20(16):5266-5273.
 
【17】PRIYAM A, CHATTERJEE A, BHATTACHARYA S C, et al. Conformation and activity dependent interaction of glucose oxidase with CdTe quantum dots: towards developing a nanoparticle based enzymatic assay[J]. Photochem Photobiol Sci, 2009,8(3):362-370.
 
【18】YANG Chun-hao, HUANG Ke-sheng, LIN Ye-shen, et al. Microfluidic assisted synthesis of multi-functional polycaprolactone microcapsules: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs[J]. Lab Chip, 2009,9:961-965.
 
【19】SUGIURA S, ODA T, AOYAGI Y, et al. Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array[J]. Lab Chip, 2008,8:1255-1257.
 
【20】KIM S H, JEON S J, YI G R, et al. Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes and structures[J]. Adv Mater, 2008,20:1649-1655.
 
【21】ABRAHAM S, PARK Y H, LEE J K, et al. Microfluidic synthesis of reversibly swelling porous polymeric microcapsules with controlled morphology[J]. Adv Mater, 2008,20:2177-2182.
 
【22】YU W W, QU Lian-hua, GUO Wen-zhuo, et al. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals[J]. Chem Mater, 2003,15:2854-2860.
 
【23】YU W W, QU Lian-hua, GUO Wen-zhuo, et al. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals[J]. Chem Mater, 2003,15:4300-4308.
 
【24】TANG Hong-wu, LUO Mei-na, XIONG Yong-pan, et al. High-resolution Hadamard transform microscope fluorescence imaging: quantifying the DNA content in single cells[J]. Anal Bioanal Chem, 2005,381:901-906.
 
【25】TANG Hong-wu, CHEN Guo-quan, ZHOU Jin-song, et al. Hadamard transform fluorescence image microscopy using one-dimensional movable mask[J]. Anal Chim Acta, 2002,468:27-34.
 
【26】LIN Han, HUANG Chen-pin, LI Wei, et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity examplified by 2-chlorophenol[J]. Appl Catal B: Environ, 2006,68:1-11.
 
【27】ZHANG Ke-lin, LIU Chen-ming, HUANG Fu-qiang, et al. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst[J]. Appl Catal B: Environ, 2006,68:125-130.
 
【28】BURCH R, WATLING T C. The effect of promoters on Pt/Al2O3 catalysts for the reduction of NO by C3H6 under lean-burn conditions[J]. Appl Catal B: Environ, 1997,11:207-216.
 
【29】YAMASHITA H, ICHIHASHI Y, ANPO M M. Photocatalytic decomposition of NO at 275 K on titanium oxides included within Y-zeolite cavities: the structure and role of the active sites[J]. J Phys Chem, 1996,100:16041-16044.
 
【30】LI He-xing, LI Gui-sheng, WAN Zhu-jian, et al. Preparation of an active SO42-/TiO2 photocatalyst for phenol degradation under supercritical conditions[J]. J Mol Catal A Chem, 2005,226:93-100.
 
【31】LI He-xing, ZHANG Xin-yu, HUO Yun-jing, et al. Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization[J]. Environ Sci Technol, 2007,41:4410-4414.
 
【32】CHHOR K, BOCQUENT J F, POMMIER C. Syntheses of submicron TiO2 powders in vapor, liquid and supercritical phases, a comparative study[J]. Mater Chem Phys, 1992,32:249-253.
 
【33】URLAUB R, POSSET U, THULL R F T. FT-IR spectroscopic investigations on sol-gel-derived coatings from acid-modified titanium alkoxides[J]. J Non-Cryst Solids, 2000,265:276-279.
 
【34】SILVERSTEIN R M, BASSLER G C, MORRILL T C. Spectrometric identification of organic compounds[C]. 4 Ed. New York: John Wiley and Sons, 1981.
 
【35】YUAN Jian, CHEN Ming-xia, SHI Jian-wei, et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride[J]. J Hydrogen Energy, 2006,31:1326-1331.
 
【36】OHNO T, AKIYOSHI M, UMEBAYASHI T, et al. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light[J]. Appl Catal A: Gen, 2004,265:115-121.
 
【37】ETCHBERRY A, IRANZO-MARIN F, NOVAKOVIC E, et al. Contribution to the understanding of the CdTe and Cd1-yZnyTe surface chemistry[J]. J Cryst Growth, 1998,184/185:213-217.
 
相关信息
   标题 相关频次
 La2O3/MoSi2复合微粒对烧结钼组织与力学性能的影响
 2
 氨基苯磺酰胺-CdTe量子点耦合物的制备及表征
 2
 掺杂镧对TZM合金组织与性能的影响
 2
 发电机定冷水系统不明异物的表征和分析
 2
 仿生CuO-CeO2复合材料低温选择性催化还原脱硝性能
 2
 光度法测定大气中微量氯-基于对甲基橙的氧化褪色反应
 2
 机械合金化法制备Fe0.95Co0.05Si2材料及其热电性能
 2
 介孔二氧化钛的制备及铜(Ⅱ)对其光催化氧化活性的影响
 2
 金属腐蚀形貌的分形表征
 2
 硫酸锰掺杂聚吡咯膜的制备和其耐腐蚀性能
 2
 气相色谱-质谱法测定汽车材料中7种苯系物
 2
 溶胶-凝胶法制备氮掺杂MCNTs/TiO2光催化复合材料
 2
 石墨烯常用表征方法
 2
 铁素体不锈钢晶粒度的非线性超声表征
 2
 无机酸掺杂聚邻甲苯胺涂料的制备及性能
 2
 稀土元素钬掺杂二氧化钛光催化剂的制备及对碱性品红降解性能研究
 2
 新型雌二醇分子印迹聚合物的合成与表征
 2
 荧光光谱法研究2-乙氧基-3-苯基喹唑啉-4-酮与牛血清白蛋白的相互作用机理
 2
 用作滚道的行星轮内孔表面黑点产生原因
 2
 珠光体组织转变的非线性超声表征
 2
  零维铜掺杂铯锌卤化物发光动力学机理获解析
 1
 Ag/Na双掺杂和Ag8SnSe6纳米化实现高性能的多晶SnSe热电材料
 1
 Angew. Chem.:掺杂引入无定型层、空位和梯度能带结构提升光电化学性能
 1
 DMA:压流剖面技术在力学表征界地位的取代者还是后备军
 1
 Schiff碱N-(4-羟基苯基亚甲基)-对甲氧基苯胺的室温固相合成及表征
 1
 薄层色谱法应用于N-乙基-对-薄荷烷-3-甲酰胺的分离和鉴别
 1
 掺杂了插层2-巯基苯并咪唑Zn/Al层状双氢氧化物自修复涂层的耐蚀性
 1
 大连化物所发现锰离子掺杂钙钛矿单晶荧光动力学调控机理
 1
 氮硼氮(NBN)掺杂锯齿型边缘石墨烯纳米带的表面合成
 1
 电感耦合等离子体光谱法测定纳米二氧化钛及钛基物料中痕量钒
 1