搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
管线钢腐蚀疲劳裂纹扩展的研究现状
          
Current Research on the Corrosion Fatigue Crack Propagation Rate of Pipeline Steels

摘    要
腐蚀疲劳是管线钢最为严重的破坏和失效形式之一。近年来, 对管线钢腐蚀疲劳裂纹扩展行为, 各种影响因素的物理机制, 以及裂纹扩展速率模型的研究, 已受到广泛的关注, 也提出了不少新的研究方法和新理论, 但在某些方面的理解仍不是十分清楚。目前应用较多的裂纹扩展速率模型大多是对线性叠加模型的修正, 经试验验证, 这些模型在各自特定的材料/环境体系的应用上是可靠的, 但仍难以获得统一的公式, 对于已提出的模型仍需完善。本工作对管线钢腐蚀疲劳裂纹扩展速率的部分重要的影响因素及其寿命预测模型的研究进展进行了总结, 对新理论和新模型进行了探讨, 提出了尚需解决的问题, 对进一步的研究工作进行了展望。
标    签 管线钢   裂纹扩展速率   腐蚀疲劳   综述   pipeline steel   crack propagation rate   corrosion fatigue   review  
 
Abstract
Corrosion fatigue damage is one of the most serious fracture forms of oil and gas transmission pipeline steels, which can cause severe fracture and failure. Recently, the corrosion fatigue crack propagation behavior, mechanisms of several influencing factors and the modeling of the crack propagation rate have attracted much focus, and a number of new methods and theories have been proposed. However, the understanding in some aspects still remains controversial. The majority of the current crack propagation rate models, whose reliability was experimentally validated when they were applied to their specific materials/environment systems, are the amendment to the linear superposition model. By the modeling which could provide a theoretical support to the actual operation and protection of the pipelines, the life of pipeline steels could be predicted, and the effects of influencing factors could be quantified. In this article, the current research on some influencing factors and theoretical models of the crack propagation rate of pipeline steels is summarized and discussed, and the future research priorities and problems to be solved are prospected.

中图分类号 TG172.4

 
  中国光学期刊网论文下载说明


所属栏目 专论

基金项目 国家科技基础条件平台建设资助项目(2005DKA10400)

收稿日期 2012/3/19

修改稿日期

网络出版日期

作者单位点击查看


备注范林, 博士研究生,

引用该论文: FAN Lin,LI Xiao-gang,DU Cui-wei,LIU Zhi-yong. Current Research on the Corrosion Fatigue Crack Propagation Rate of Pipeline Steels[J]. Corrosion & Protection, 2012, 33(11): 990


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Gamboa E, Linton V, Law M. Fatigue of stress corrosion cracks in X65 pipeline steels[J]. International Journal of Fatigue, 2008, 30(5):850-860.
 
【2】Vasudevan A K, Sadananda K, Louat N. Two critical stress intensities for threshold fatigue crack propagation[J]. Scripta Metallurgica, 1993, 28(1):65-70.
 
【3】Elber W. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1):37-44.
 
【4】Krenn C R, J W Morris Jr. The compatibility of crack closure and Kmax dependent models of fatigue crack growth[J]. International Journal of Fatigue, 1999, 21(S1):147-155.
 
【5】Zhao W M, Wang Y X, Zhang T M, et al. Study on the mechanism of high-cycle corrosion fatigue crack initiation in X80 steel[J]. Corrosion Science, 2012, 57:99-103.
 
【6】Gangloff R P. Environment-induced cracking of metals[C]//Houston:NACE, Proceedings of the First International Conference on Environment-Induced Cracking of Metals, 1988:21-29.
 
【7】韩恩厚, 韩玉梅, 郑宇礼, 等. 应力比和频率对低合金钢腐蚀疲劳扩展机理的影响[J]. 金属学报, 1993, 29(5):223-228.
 
【8】李明星, 闫凤霞, 路民旭. X70管线钢在模拟土壤介质中的裂纹扩展行为研究[J]. 机械强度, 2004, 26(3):313-316.
 
【9】Fassina P, Brunella F, Lazzari L, et al. Fatigue behavior of pipeline steel under hydrogen environment and low temperature[J]. Procedia Engineering, 2011, 10:3345-3352.
 
【10】Lu B T, Song F, Gao M, et al. Crack growth model for pipelines exposed to concentrated carbonate-bicarbonate solution with high pH[J]. Corrosion Science, 2010, 52(12):4064-4072.
 
【11】李劲, 王政富, 柯伟. 波型与电位对A537钢疲劳裂纹扩展的影响[J]. 金属学报, 1993, 29(6):B274-279.
 
【12】张国军, 潘治国, 段占军, 等. X60管线钢腐蚀疲劳裂纹扩展特性[J]. 石油化工腐蚀与防护, 2001, 18(1):53-56.
 
【13】Davies D H, Burstein G T. Effects of bicarbonate on the corrosion and passivation of iron[J]. Corrosion, 1980, 36(8):416-422.
 
【14】Eslami A, Fang B, Kania R, et al. Stress corrosion cracking initiation under the disbonded coating of pipeline steel in near-neutral pH environment[J]. Corrosion Science, 2010, 52(11):3750-3756.
 
【15】Eslami A, Kania R, Worthingham B, et al. Effect of CO2 and R-ratio on near-neutral pH stress corrosion cracking initiation under a disbonded coating of pipeline steel[J]. Corrosion Science, 2011, 53(6):2318-2327.
 
【16】Parkins R N, Zhou S. The stress corrosion cracking of C-Mn steel in CO2-HCO3--CO32- solutions. I:stress corrosion data[J]. Corrosion Science, 1997, 39(1):159-173.
 
【17】Gu B, Luo J L, Mao X. Hydrogen-facilitated anodic dissolution type stress corrosion cracking of pipeline steels in near-neutral pH solution[J]. Corrosion, 1999, 55(1):96-106.
 
【18】Chen W, Kania R, Worthingham R, et al. Tansgranular crack growth in the pipeline steels exposed to near-neutral pH soil aqueous solutions:the role of hydrogen[J]. Acta Materialia, 2009, 57(20):6200-6214.
 
【19】Lu B T, Luo J L, Norton P R, et al. Effect of dissolved hydrogen and elastic and plastic deformation on active dissolution of pipeline steel in anaerobic groundwater of near-neutral pH[J]. Acta Materialia, 2009, 57(1):41-49.
 
【20】Gangloff R P. Hydrogen-assisted cracking in high-strength alloys[R]. Virginia:University of Virginia, 2003:1-194.
 
【21】Kang Y W, Chen W X, Kania R, et al. Simulation of crack growth during hydrostatic testing of pipeline steel in near-neutral pH environment[J]. Corrosion Science, 2011, 53(3):968-975.
 
【22】Cheng Y F. Thermodynamically modeling the interactions of hydrogen, stress and anodic dissolution at crack-tip during near-neutral pH SCC in pipelines[J]. Journal of Materials Science, 2007, 42(8):2701-2705.
 
【23】Tang X, Cheng Y F. Quantitative characterization by micro-electrochemical measurements of the synergism of hydrogen, stress and dissolution on near-neutral pH stress corrosion cracking of pipelines[J]. Corrosion Science, 2011, 53(9):2927-2933.
 
【24】Wang J, Atrens A. Analysis of service stress corrosion cracking in a natural gas transmission pipeline, active or dormant?[J]. Engineering Failure Analysis, 2004, 11(1):3-18.
 
【25】钟勇, 肖福仁, 单以银, 等. 管线钢疲劳裂纹扩展速率与疲劳寿命关系的研究[J]. 金属学报, 2005, 41(5):523-528.
 
【26】Aran M A, Szpunar J A. A novel microstructure-grain boundary character based integrated modeling approach of intergranular stress corrosion crack propagation in polycrystalline materials[J]. Computational Materials Science, 2010, 47(4):890-900.
 
【27】Alexandreanu B, Was G S. The role of stress in the efcacy of coincident site lattice boundaries in improving creep and stress corrosion cracking[J]. Scripta Materialia, 2006, 54(6):1047-1052.
 
【28】Wei R P. Environmental considerations for fatigue cracking[J]. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25(8-9):845-854.
 
【29】Paris P, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4):528-534.
 
【30】Austen I M, Mcintyre P. Corrosion fatigue of high strength steel in low pressure hydrogen gas[J]. Metal Science, 1978, 13(7):420-428.
 
【31】Zhang X L, Hirt M A. Fatigue crack propagation in steels. Engineering Fracture Mechanics[J]. 1983, 18(5):965-974.
 
【32】王荣. 腐蚀疲劳裂纹扩展的断裂模型[J]. 中国腐蚀与防护学报, 1998, 18(2):87-94.
 
【33】李明星, 王荣, 李鹏亮, 等. X70管线钢在模拟土壤介质中裂纹扩展特性研究[J]. 石油机械, 2002, 30(7):1-4.
 
【34】Knop M, Heath J, Sterjovski Z, et al. Effects of cycle frequency on corrosion-fatigue crack growth in cathodically protected high-strength steels[J]. Procedia Engineering, 2010, 2(1):1243-1252.
 
【35】Lu B T, Song F, Gao M, et al. Crack growth prediction for underground high pressure gas lines exposed to concentrated carbonate-bicarbonate solution with high pH[J]. Engineering Fracture Mechanics, 2011, 78(7):1452-1465.
 
【36】Ford F P. Quantitative prediction of environmentally assisted cracking[J]. Corrosion, 1996, 52(5):375-395.
 
【37】Parkins R N, Singh P M. Stress corrosion crack coalescence[J]. Corrosion, 1990, 46(6):485-499.
 
【38】Song F M. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH[J]. Corrosion Science, 2009, 51(11):2657-2674.
 
【39】Parkins R N. Current topics in corrosion:factors influencing stress corrosion crack growth kinetics[J]. Corrosion, 1987, 43(3):130-139.
 
相关信息
   标题 相关频次
 X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究
 6
 不同组织X70钢在酸性土壤模拟溶液中的强激光与粒子束应力腐蚀敏感性
 6
 埋地燃气管道泄漏失效与数据库研究进展
 6
 酸性土壤中的模拟滞留液溶液对X80钢腐蚀行为的影响
 6
 影响埋地X70管线钢腐蚀性的土壤因素评价
 6
 316L不锈钢在FeCl3溶液中点蚀行为的电化学噪声检测
 4
 Cl-对汽车镀锌板在泥浆中腐蚀行为的影响
 4
 Cl-对X80管线钢在HCO-3溶液中的电化学行为影响
 4
 pH值对热镀锌汽车板和IF钢基板在NaCl溶液中电化学行为的影响
 4
 SO2-4对X80管线钢在含Cl-的NaHCO3溶液中点蚀行为影响
 4
 X65管线钢焊接接头在H2S/CO2环境中抗SSCC性能
 4
 X70钢在大庆两种土壤中的腐蚀行为
 4
 X70管线钢在鹰潭土壤模拟溶液中腐蚀因素灰关联分析
 4
 X80管线钢在0.5 mol/L NaHCO3+0.02 mol/L 强激光与粒子束NaCl溶液中的点腐蚀性能
 4
 电位扫描速率对电极过程动力学参数测试结果的影响
 4
 腐蚀电化学测量中溶液电阻的补偿
 4
 含水量对Q235钢在大港土中初始腐蚀行为的影响
 4
 交流电干扰下Q235钢与铜在不同含水量北京土壤中的短期腐蚀行为
 4
 库尔勒模拟溶液中HCO-3对X70钢缝隙腐蚀的影响
 4
 酸性环境中CO2对2205不锈钢应力腐蚀的影响
 4
 温度对N80钢在CO2饱和的NaCl溶液中的腐蚀电化学行为的影响
 4
 温度对Q235钢在大港模拟溶液中腐蚀行为的影响
 4
 温度对X70管线钢在碱性溶液中应力腐蚀开裂行为的影响
 4
 在役管道焊接修复缺陷质量评价
 4
 304L不锈钢在高温高压水中的腐蚀疲劳裂纹扩展行为
 3
 F690超高强钢的腐蚀疲劳裂纹扩展行为及其有限元模拟
 3
 奥氏体不锈钢在海水环境中的腐蚀疲劳裂纹扩展行为
 3
 20#碳钢和321不锈钢在高温环烷酸中的腐蚀行为
 2
 20管线钢在新疆塔河地区土壤中的腐蚀行为
 2
 2A12铝合金不同方法腐蚀疲劳的寿命及断口形貌
 2