搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
国产反应堆压力容器材料一回路水环境疲劳设计曲线初探
          
Fatigue Design Curves for Domestic Recctor Pressure Vessel Steel in Primary Water

摘    要
硫含量、应变速率、温度、水中溶解氧含量等环境因素对反应堆压力容器(RPV)材料在高温高压水中环境疲劳寿命有重要影响。分析了将环境因素引入疲劳设计曲线的几个主要模型: 统计模型、修正因子模型和国内新提出的模型(Wu模型)。分别采用这三个模型对国产RPV材料环境疲劳设计曲线进行了计算, 并将计算结果与ASME规范中的疲劳设计曲线进行了对比。在应变幅值低于0.15%时, ASME曲线更保守, 而应变幅高于0.15%时, 结果相反。
标    签 反应堆压力容器   环境疲劳   疲劳设计曲线   Recctor Pressure Vessel (RPV)   corrosion fatigue   fatigue design curve  
 
Abstract
The effects of environment factors such as S content, stain rate, temperature and dissolved oxygen on the corrosion fatigue behavior of steels for reactor pressure vessel (RPV) in high temperature and high pressure water are reviewed. The difference of existing fatigue design models involving environmental factors is discussed also. The fatigue design curve of a domestic made low-alloy RPV steel was calculated by using statistical model (ANL model), fatigue correction factor model (EFD model) and a new model proposed (Wu model). A comparison of the calculated data and ASME fatigue design code was made. The results show that ANL model, EFD model and Wu model were relatively conservative when the stain amplitude was higher than 0.15%, while ASME fatigue design code was more conservative if the stain amplitude was less than 0.15%.

中图分类号 TG174

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 大型先进压水堆核电站重大专项(2011ZX06004002)

收稿日期 2011/12/19

修改稿日期

网络出版日期

作者单位点击查看


备注黄平, 工程师, 硕士,

引用该论文: HUNG Ping,QIAO Yan-xin,WANG Rong-shan. Fatigue Design Curves for Domestic Recctor Pressure Vessel Steel in Primary Water[J]. Corrosion & Protection, 2012, 33(12): 1045


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Carey J. Time-limited aging analysis report for the Edwin I. Hatch Nuclear Power Plant[C]//Electric Power Research Institute, Southern Company, 2000.
 
【2】Wu X Q, Katada Y. Influence of surface finish on fatigue cracking behavior of reactor pressure vessel steel in high temperature water[J]. Mater Corros, 2006, 57:868.
 
【3】Sluys W A V D, Emanueslson R H. In the 3th International symposium on environmental degradation of materials in nuclear power system-water reactor[C]//Warren dale:TMS-AIME 1988:277.
 
【4】Chopra O K, Shack W J. Low-cycle fatigue of piping and pressure vessel steels in LWR environments[J]. Nucl Eng Des, 1998, 184:49.
 
【5】Kuniya J, Anzai H, Masaoka I. Effect of MnS inclusions on stress corrosion cracking in low-alloy steels[J]. Corrosion 1992, 48:419.
 
【6】Kondo T, Nakajima H, Nagasaki R. Metallographic investigation on the cladding failure in the pressure vessel of a BWR[J]. Nucl Eng Des, 1971, 16:205.
 
【7】Wu X Q, Katada Y. Strain-rate dependence of low cycle fatigue behavior in a simulated BWR environment[J]. Corros Sci, 2005, 47:1415.
 
【8】Pleune T T, Chopra O K. Artificial neural networks and effects of loading conditions on fatigue life of carbon and low-alloy ateels[C]//New York:American Society of Mechanical Engineers, 1997, 350:413.
 
【9】Scott P M, Truswell A E, Druce S G. Corrosion fatigue of pressure vessel steels in PWR environments-influence of steel sulfur content[J]. Corrosion, 1984, 40:350.
 
【10】Higuchi M, Iida K. Fatigue strength correction factors for carbon and low-alloy steels in oxygen-containing high-temperature water[J]. Nucl Eng Des, 1991, 129:293.
 
【11】Chopra O K, Shack W J. Effect of LWR coolant environments on the fatigue life of reactor materials[R]. NUREG/CR-6909 ANL-06/08, 2007.
 
【12】Chopra O K, Shack W J. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels[R]. NUREG/CR-6583, ANL-97/18, 1998.
 
【13】Tice D R. A review of the U.K. Collaborative program to test the effects of mechanical and environmental variables on environmentally assisted crack growth of PWR pressure vessel steels[J]. Corro Sci, 1985, 25:705.
 
【14】Katada Y, Nagata N, Sato S. Effect of dissolved oxygen concentration on fatigue crack growth behavior of A533 B steel in high-temperature water[J]. ISIJ Intl, 1993, 33:877.
 
【15】Nakao G, Kanasaki H, Higuchi M, et al. Effects of temperature and dissolved oxygen content on fatigue life of carbon and low-alloy steels in LWR water environment[C]//American Society of Mechanical Engineers, New York:1995, 306:123.
 
【16】Yeh J J, Huang J Y, Kuo R C. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments[J]. Mater Chem Phy, 2007, 104:125.
 
【17】Kanasaki H, Hayashi M, Iida K, et al. Effects of temperature change on fatigue life of carbon steel in high temperature water fatigue and crack growth:environmental effects, modeling studies, and design considerations[M]. New York:American Society of Mechanical Engineers, 1995:117.
 
【18】Iida K, Kobayashi H, Higuchi M. Predictive method of low cycle fatigue life of carbon and low alloy steels in high temperature water environments[M]. NUREG:CP-0067, MEA-2090, vol.2, 1986.
 
【19】Nakao G, Kanasaki H, Higuchi M, et al. Effects of temperature and dissolved oxygen content on fatigue life of carbon and low-alloy steels in LWR water environment[C]//American Society of Mechanical Engineers, 1995:123.
 
【20】Wire G L, Li Y Y. Initiation of environmentally-assisted cracking in low-alloy steels[C]//New York:American Society of Mechanical Engineers, 1996;1:269.
 
【21】Scott P M, Truswell:Proc A E. IAEA specialists′ meeting on subcritical crack growth[R]. NUREG/CP-0044, Lanham, MD:MEA Inc, 1983.
 
【22】Gavenda D J, Luebbers R R, Chopra O K. Crack initiation and crack growth behavior of carbon and low-alloy steels[J]. Fatigue and Fracture of Engineering Materials and Structure, 1997, 350:243.
 
【23】Congleton J, Shoji T, Parkins R N. The SCC of reactor pressure vessel in high temperature water[J]. Corro Sci, 1985, 25:633.
 
【24】Terrell J B. Effect of cyclic frequency on the fatigue life of ASME SA-106-B piping steel in PWR environments[J]. J Mater Eng, 1988, 10:193.
 
【25】Terrell J B. Fatigue strength of smooth and notched specimens of ASME SA 106-B steel in PWR environments[R]. Nuclear Regulatory Commission NUREG:CR-5136, MEA-2289, 1988.
 
【26】Wu X Q, Katada Y. Influence of cyclic strain rate on environmentally assisted cracking behavior of pressure vessel steel in high-temperature water[J]. Mater Sci Eng A, 2004, 379:58.
 
【27】Wu X Q, Katada Y. Influence of strain rate change on corrosion fatigue behavior of A533B steel in simulated BWR water[J]. J Mater Sci, 2004, 39:2519.
 
【28】Chopra O K, Park H B. Mechanism of fatigue crack initiation in light water reactor coolant environments[C]//International Conference on Fatigue of Reactor Components Napa CA:2000.
 
【29】Wu X Q, Katada Y. Strain-amplitude dependent fatigue resistance of low-alloy pressure vessel steels in high-temperature water[J]. J Mater Sci, 2005, 40:1953.
 
【30】Higuchi M. An updated method to evaluate reactor water effects on fatigue life for carbon and low alloy steels[J]. International Conference on Fatigue of Reactor Components. Napa CA:2000.
 
【31】Chopra O K, Alexandreanu B, Shack W J. Effect of material heat treatment on fatigue crack initiation in austenitic stainless steels in LWR environments[R]. NUREG/CR-6878, ANL-03/35, 2007.
 
【32】Keisler J M, Chopra O K, Shack W J. Statistical models for estimating fatigue strain-life behavior of pressure boundary materials in light water reactor environments[J]. Nucl Eng Des, 1996, 167:129.
 
【33】Majumdar S, Chopra O K, Shack W J. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments[R]. NUREG/CR-5999, 1993.
 
【34】Wu X Q, Katada Y. Roles of dynamic strain aging in corrosion fatigue of low-alloy pressure vessel steel in high temperature water[J]. J Mater Sci, 2007, 42:633.
 
【35】Wu X Q, Han E H, Ke W, et al. Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water[J]. Nucl Eng Des, 2007, 237:1452.
 
【36】徐松. 核电低合金钢和不锈钢高温水腐蚀疲劳行为及环境疲劳设计模型研究[D]. 沈阳:中国科学院金属研究所博士学位论文, 2010.
 
相关信息
   标题 相关频次
 奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为
 2
 国产核电主管道用316LN钢的低周疲劳性能评估
 2
 2A12铝合金不同方法腐蚀疲劳的寿命及断口形貌
 1
 2Cr13钢汽轮机叶片的开裂原因分析
 1
 304L不锈钢疏水管焊接接头的腐蚀疲劳行为
 1
 304L不锈钢在高温高压水中的腐蚀疲劳裂纹扩展行为
 1
 30Cr13不锈钢循环水泵轴的失效原因
 1
 35kV架空输电线路钢芯铝绞线内层铝股线的腐蚀失效分析
 1
 60Si2CrA Ⅱ型弹条断裂原因
 1
 Cl-对高氮不锈钢在0.5 mol/L NaOH溶液中腐蚀行为的影响
 1
 F690超高强钢的腐蚀疲劳裂纹扩展行为及其有限元模拟
 1
 Fe-19Cr-15Mn-0.66N高氮钢在空气和0.5 mol/L NaCl溶液中的腐蚀磨损行为
 1
 G105钢级钻杆刺漏原因分析
 1
 G105钻杆管体刺穿失效分析
 1
 LY12CZ铝合金在人工海水中的腐蚀疲劳裂纹扩展行为
 1
 S135钻杆刺漏失效分析
 1
 S135钻杆刺漏失效分析及疲劳验证试验
 1
 S135钻杆失效分析
 1
 奥氏体不锈钢在海水环境中的腐蚀疲劳裂纹扩展行为
 1
 板式空冷器板片开裂失效分析
 1
 表面处理对40Cr钢腐蚀疲劳寿命的影响
 1
 波音747SP飞机主起落架收放作动筒断裂分析
 1
 不同条件下300M钢的疲劳裂纹扩展行为
 1
 不锈钢U形螺栓的断裂原因
 1
 超声仿真技术在反应堆压力容器超声检查中的应用
 1
 电沉积法制备316L不锈钢表面微纳结构超疏水涂层及其耐海水腐蚀性能
 1
 电力机车电机转轴组件断裂分析
 1
 反应堆压力容器安全端异种金属焊缝超声检查技术
 1
 反应堆压力容器厚壁焊缝的相控阵超声检测
 1
 反应堆压力容器接管-安全端异种钢焊缝直射纵波超声检测方法
 1