搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
银纳米颗粒的合成及其与曙红Y的相互作用
          
Preparation of Silver Nanoparticles and its Interaction with Eosin Y

摘    要
分别制备了以L-半胱氨酸(L-cyst.)或以巯基乙酸(TGA)保护的银纳米颗粒,并用紫外-可见分光光度法和透射电子显微技术(TEM)对两种不同状态的银纳米颗粒的结构作了表征。由其吸收光谱图显示,L-cyst.和TGA保护的银纳米颗粒的吸收峰依次位于384 nm和392 nm波长处;由TEM的检测结果表明:上述2种形态银纳米颗粒的粒度大小依次在10~40 nm和20~30 nm范围内。试验中发现,以L-cyst.保护的银纳米颗粒与曙红Y之间有明显的相互作用,导致其吸收峰从384 nm红移至395 nm;以TGA保护的银纳米颗粒与曙红Y之间未见有相互反应。初步探讨了其作用机理,认为系由于结合于银纳米颗粒表面的L-半胱氨酸分子所带的正电荷与曙红Y分子上的负电荷之间的静电作用的结果。
标    签 银纳米颗粒   L-半胱氨酸   巯基乙酸   曙红Y   相互作用   Silver nanoparticles   L-cysteine   Thioglycollic acid   Eosin Y   Interaction  
 
Abstract
Silver nanoparticles were prepared under the protection of either L-cysteine (L-cyst.) or thioglycollic acid (TGA). The structures of these 2 different states of silver nanoparticles were characterized by UV-VIS spectrophotometry and transmission electron microscope (TEM). As shown by the UV-VIS absorption spectra, absorption maxima at 384 nm and 392 nm were found for the L-cyct.-protected and TGA-protected silver nanoparticles respectively. It was shown by the results of TEM study, the sizes of the L-cyst.-protected and TGA-protected Ag-nanoparticles were found in the ranges of 10-40 nm and 20-30 nm respectively. It was found that significant interaction was observed between the L-cyst.-protected Ag-nanoparticles and eosin Y, giving a bathochromic shift of absorption maximum from 384 nm to 395 nm; and that no interaction between the TGA-protected Ag-nanoparticles and eosin Y was observed. Electrostatic action between the positively charged L-cyst. molecules at the surface of Ag-nanoparticles and the negatively charged eosin Y molecules was proposed as the chemism of the interaction.

中图分类号 O657.32

 
  中国光学期刊网论文下载说明


所属栏目

基金项目 国家自然科学基金(20943001)资助项目;陕西省教育厅科研计划(09JK576)项目

收稿日期 2011/1/20

修改稿日期

网络出版日期

作者单位点击查看

备注李远刚(1977-),男,甘肃永登人,讲师,博士,主要从事超分子化学研究。

引用该论文: LI Yuan-gang,LI Hua-jing,MA Xiao-dan,WEI Ping. Preparation of Silver Nanoparticles and its Interaction with Eosin Y[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2011, 47(9): 1001~1004
李远刚,李华静,马小单,韦萍. 银纳米颗粒的合成及其与曙红Y的相互作用[J]. 理化检验-化学分册, 2011, 47(9): 1001~1004


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LIM S I, ZHONG Chuan-jia. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures[J]. Acc Chem Res, 2009,42(6):798-808.
 
【2】SUBER L, PLUNKETT W R. Formation mechanism of silver nanoparticle 1D microstructures and their hierarchical assembly into 3D superstructures[J]. Nanoscale, 2010,2:128-133.
 
【3】KUNDU S, WANG K, LIANG H. Size-controlled synthesis and self-assembly of silver nanoparticles within a minute using microwave irradiation[J]. J Phy Chem C, 2009,113(1):134-141.
 
【4】GROSSERUESCHKAMP M, NOWAK C, SCHACH D, et al. Silver surfaces with optimized surface enhancement by self-assembly of silver nanoparticles for spectroelectrochemical applications[J]. J Phy Chem C, 2009,113(41):17698-17704.
 
【5】TRAN M L, CENTENO S P, HUTCHISON J A, et al. Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires[J]. J Am Chem Soc, 2008,130(51):17240-17241.
 
【6】GRAF P, MANTION A, FOELSKE A, et al. Peptide-coated silver nanoparticles: synthesis, surface chemistry, and pH-triggered, reversible assembly into particle assemblies[J]. Chem Eur J, 2009,15(23):5831-5844.
 
【7】GROUCHKO M, POPOV I, UVAROV V, et al. Coalescence of silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly[J]. Langmuir, 2009,25(4):2501-2503.
 
【8】LIN Cheng-yan, YU Cheng-ju, LIN Yen-shui, et al. Colorimetric sensing of silver(Ⅰ) and mercury(Ⅱ) ions based on an assembly of tween 20-stabilized gold nanoparticles[J]. Anal Chem, 2010,82(16):6830-6837.
 
【9】OH N, KIM J H, YOON C S. Self-assembly of silver nanoparticles synthesized by using a liquid-crystalline phospholipid membrane[J]. Adv Mater, 2008,20(18):3404-3409.
 
【10】KARIUKI N N, LUO J, HASSAN S A, et al. Assembly of bimetallic gold-silver nanoparticles via selective interparticle dicarboxylate-silver linkages[J]. Chem Mater, 2006,18(1):123-132.
 
【11】黄文华,王百木,张雷.金纳米颗粒在玻碳电极表面的固载及其对抗坏血酸的电催化氧化[J].理化检验-化学分册, 2008,44(4):299-303.
 
【12】王宗花,陆捷,闫永臣,等.L-色氨酸功能化多壁碳纳米管的制备与表征[J].分析测试学报, 2007,26(1):62-65.
 
【13】王悦辉,王婷,周济.纳米银粒子对[Ru(bpy)3]2+光谱学性质的影响及电解质效应[J].物理化学学报, 2010,26(6):1607-1616.
 
【14】安保山,李立琳,王培杰.银纳米颗粒单层膜的组装及其SERS特性研究[J].纳米科技, 2010,7(4):36-39.
 
【15】夏立新,宫科,汪舰,等.用简便方法组装二维模板银纳米阵列[J].化学学报, 2007,65(21):2489-2493.
 
相关信息
   标题 相关频次
 1-羟基芘与牛血清白蛋白的相互作用
 2
 白杨素磺酸盐与牛血清白蛋白的相互作用
 2
 变色酸与牛血清白蛋白的相互作用
 2
 对氨基苯酚在L-半胱氨酸修饰金电极上的电化学行为及其在分析中的应用
 2
 高效液相色谱法测定D型丝氨酸的含量
 2
 镉离子对三种黄酮小分子与蛋白质相互作用的生物无机化学效应
 2
 共振瑞利散射光谱法测定长春瑞滨
 2
 光谱法研究萘酰亚胺类衍生物与牛血清白蛋白的相互作用
 2
 光谱法研究诱惑红与牛血清白蛋白的相互作用
 2
 光谱学方法应用于小分子与牛血清白蛋白相互作用研究进展
 2
 含多腐蚀缺陷油气管道的相互作用准则及剩余强度
 2
 环烷酸腐蚀影响因素及其相互作用
 2
 基于对曙红Y和罗丹明B之间的能量转移反应的荧光光谱法测定痕量锰
 2
 基于纳米银-曙红Y-DNA的荧光共振能量转移探针
 2
 基于碳量子点与曙红Y荧光共振能量的转移测定矿石中金
 2
 氢化物发生-原子荧光光谱法测定中药材中痕量锑
 2
 乳酸甲酯脱水体系中丙烯酸甲酯的气相色谱分析
 2
 识别牛血红蛋白的分子印迹电化学传感器的制备与研究
 2
 曙红Y瑞利散射、二级散射及倍频散射法测定痕量铝
 2
 曙红Y与有机锡化合物的显色反应研究
 2
 细胞色素c/L-半胱氨酸修饰金电极检测亚硝酸根
 2
 线性扫描伏安法研究白杨素与牛血清白蛋白的相互作用
 2
 循环伏安法测定去甲肾上腺素
 2
 银掺杂L-脯氨酸修饰电极用于研究肾上腺素与DNA的相互作用
 2
 荧光光谱法对邻香草醛缩精氨酸席夫碱与胰蛋白酶相互作用的研究及其应用
 2
 荧光光谱法研究间硝基苯胺与牛血清白蛋白的相互作用
 2
 紫外吸收光谱和荧光光谱法研究大黄酚与牛血清白蛋白相互作用机制
 2
 阻抑动力学光度法测定食品中痕量单宁
 2
 Angew. Chem.:共晶的银纳米颗粒SD/Ag210和SD/Ag211
 1
 靛蓝二磺酸钠和牛血清白蛋白的结合反应
 1