搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
粉末高温合金的低周疲劳研究进展
          
Research Progress on Low Cycle Fatigue of Powder Metallurgy High Temperature Alloys

摘    要
参考了前人对粉末高温合金低周疲劳的研究成果, 回顾了基于缺陷的裂纹萌生和扩展的研究情况, 介绍了针对粉末高温合金的喷丸强化机理和作用, 总结了几种寿命模型, 其中修正Mitchell模型最适合粉末高温合金的寿命预测; 得出了需加强粉末高温合金低周疲劳寿命模型及喷丸强化研究的结论。
标    签 粉末高温合金   低周疲劳   温度   寿命模型   缺陷   裂纹萌生与扩展   喷丸强化   powder metallurgy high temperature alloys   low cycle fatigue   temperature   life model   defect   crack initiation and propagation   shot peening strengthening  
 
Abstract
The research made by predecessors in the low cycle fatigue of powder metallurgy high temperature alloys was refered to, including the crack initiation and propagation based on the defects, the mechanism and effect of peening; several life model were summarized, the modified Mitchell method was the most suitable method for powder metallurgy high temperature alloys, the conclusion was made that the research about the low cycle fatigue life model and shot peening strengthening should be enhanced.

中图分类号 TG132.3+2 TG113.25+5

 
  中国光学期刊网论文下载说明


所属栏目

基金项目 航空科学基金资助项目(2009ZF21011)

收稿日期 2011/8/21

修改稿日期

网络出版日期

作者单位点击查看

备注林涛(1987-), 男, 硕士研究生。

引用该论文: LIN Tao,HE Yu-huai. Research Progress on Low Cycle Fatigue of Powder Metallurgy High Temperature Alloys[J]. Physical Testing and Chemical Analysis part A:Physical Testing, 2011, 47(11): 697~701
林涛,何玉怀. 粉末高温合金的低周疲劳研究进展[J]. 理化检验-物理分册, 2011, 47(11): 697~701


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHANG W C, EVANS K E. Numerical prediction of mechanical properties of anisotropic composite materials[J]. Computers and Structures, 1988,29(3):413-422.
 
【2】KRUEGER D D, KISSINGER R D, MENZIES R G. Development and introduction of a damage tolerant high temperature nickle-base disk alloy Rene’88 DT superalloys[C]//Proceedings of the Seventh International Symposium on Superalloys, [S.l.]:[s.n.],1992:277.
 
【3】RAUJOL S, PETTINARI F, LOCQ D, et al. Creep straining micro-mechanisms in a powder-metallurgical nickel-based superalloy[J].Materials Science and Engineering A, 2004,387-389:678-682.
 
【4】SOPHILE D G, RAPHAEL C, LAURE G, et al. Modelling the plastic deformation during high-temperature creep of a powder-metallurgy coarse grained superalloy[J]. Materials Science and Engineering A, 2008,483/484 :598-601.
 
【5】COUTURIER R, ESCARAVAGE C. Process development and mechanical properties of alloy U720LI for high temperature turbine disks[C]//Proceedings of the Tenth International Symposium on Superalloys, [S.l.]:[s.n.],2004:351-359.
 
【6】FANG Dai-ning, LIU Tie-qi. On the effect of fiber shape and packing array on elastic properties of fiber-polymer-matrix composites [J]. Inter J Polymeric Mater,1996,34(2): 75-90.
 
【7】谢济洲, 沈祝闽,侯静泳.粉末合金的高温疲劳断裂性能[J]. 航空材料学报, 1997,17(1): 44-48.
 
【8】SURESH S. 材料的疲劳[M]. 2版.王中光,译. 北京: 国防工业出版社, 1999.
 
【9】HALFORD G R. Evolution of creep-fatigue life prediction models[J]. In Creep-Fatigue Interaction at High Temperature,ASME AD, 1991,21:43-57.
 
【10】MANSON S S.Behavior of Materials Under Conditions of Thermal Stress[R].NACA TN-2933,1954.
 
【11】MANSON S S.Fatigue at Elevated Temperatures[M]// ASTM STP 520,American Society for Testing and Materials, Philadelphia, 1973:744.
 
【12】MURALIDHARAN U, MANSON S S.Thermal mechanical technical background[J].Journal of Engineering Materials and Technology, 1988,110:55.
 
【13】MITCHELL M R. Fatigue and Microstructures[M]. OH:American Society for Metals, Metals Pack, 1979:385.
 
【14】BUMEL J A, SEEGER T. Materials Data for Cyclic Loading[M]. Amsterdam:Elsevier Science Publishers, 1990.
 
【15】GRISON J. Fatigue crack initiation at inclusions in a powder metallurgy superalloy (in French)[C]// Thesis, Ecole des Mines de Paris. [S.l.]:[s.n.],1994.
 
【16】LEE K O, BAE K H, LEE S B.Comparison of prediction methods for low-cycle fatigue life of HIP superalloys at elevated temperatures for turbopump reliability[J]. Materials Science and Engineering A,2009,519:112-120.
 
【17】LAUTRIDOU J C, GU’EDOU J Y, HONNORAT Y, et al.High Temperature Materials for Power Engineering[M].[S.l.]:[s.n.],1990:1163.
 
【18】BOETTNER R C, LAIRD C, MCEVILY A J. Trans AIME[J].1965(233):379.
 
【19】MCEVILY A J, BOETTNER R C. Acta Metall, 1963(11):725.
 
【20】MINAKAWA K, NEWMAN J C, MCEVILY A J. A critical study of the crack closure effect on near-threshold fatigue crack growth [J].Fatigue and Fracture of Engineering Materials and Structure. 1983,6(4):359-365.
 
【21】DOWLING N E, BEGLEY J A. Fatigue Crack Growth during Gross Plasticity and the J-integral[M]// Mechanics of Crack Growth, ASTM STP 590.[S.l.]:[s.n.],1976:82.
 
【22】R′EMY A, ALAM A.Growth of small cracks and prediction of lifetime in high-temperature alloys[J].Materials Science and Engineering A, 2007,468-470:40-50.
 
【23】汝继来,王仁智,李向斌.Rene95粉末合金喷丸强化研究[J].航空材料学报, 1996,16(3): 12-18.
 
【24】BARRIE R L, GABB T P, TELESMAN J. Effectiveness of shot peening in suppressing fatigue cracking at non-metallic inclusions in Udimet 720[J]. Materials Science and Engineering,2008,474:71-81.
 
相关信息
   标题 相关频次
 温度对超声波检测缺陷定位定量的影响
 3
 022Cr17Ni12Mo2不锈钢缺口试样的疲劳寿命预测
 2
 1 000 MW中压外缸的超声波检查与缺陷处理
 2
 10CrNiMo结构钢悬臂弯曲加载低周疲劳表面裂纹的扩展特性
 2
 15CrMo钢的高温时效性能的变化规律及计算模型
 2
 2.25CrMoV钢于夹杂物和晶界处开裂低周疲劳裂纹扩展的原位观测
 2
 20#碳钢和321不锈钢在高温环烷酸中的腐蚀行为
 2
 20钢在不同模拟条件下的保温层下腐蚀行为
 2
 20号钢在气田站场分离器积液中的腐蚀行为
 2
 2219铝合金搅拌摩擦焊 “弱连接”缺陷的制备及表征
 2
 304L-BTC330R钢偶对在模拟自来水中的电偶腐蚀
 2
 304不锈钢在高温环烷酸介质中的腐蚀行为
 2
 34CrMo1A钢转子内部缺陷分析
 2
 35CrMnSi高强度钢断面收缩率偏低原因
 2
 3种汽车大梁钢轴向加载低周疲劳性能的比较
 2
 40ACR高强螺栓断裂原因分析
 2
 4130X钢压扁试验裂纹分析
 2
 45钢卸扣断裂原因分析
 2
 550kV断路器操作机构轴销的断裂原因分析
 2
 63Sn-37Pb和Sn-3Ag-0.5Cu合金钎料的扭转低周疲劳性能
 2
 660 MW高压加热器接管角焊缝开裂原因分析
 2
 ACVG与CIPS技术在埋地管道防腐蚀评价中的组合应用
 2
 AP1000核电站CA01结构模块的环氧涂层缺陷
 2
 AZ91D镁合金激光熔凝层的缺陷
 2
 B50A800无取向硅钢板小白点缺陷成因分析
 2
 C62AT货车车轮崩裂分析
 2
 Cr13钢在含饱和CO2介质中腐蚀的影响因素
 2
 Cr18Mn18N奥氏体不锈钢磨削过程温度场及热应力耦合的有限元模拟
 2
 DC51D+AZ热镀铝锌薄板弯曲折痕缺陷的形成原因
 2
 DD3镍基单晶高温合金喷丸强化后残余应力的有限元模拟
 2