搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
真空压力浸渗法制备金刚石/铝复合材料及其热性能
          
Fabrication and Thermal Properties of Diamond/Al Composites Prepared by Vacuum Pressure Infiltration Method

摘    要
采用真空压力浸渗法制备了金刚石/铝复合材料, 研究了金刚石颗粒尺寸、品级等对复合材料热性能的影响。结果表明: 在金刚石体积分数相同情况下, 普通研磨级金刚石颗粒的尺寸越小, 复合材料的热膨胀系数越低;用MBD4等级金刚石颗粒制备的金刚石/铝复合材料具有最小的热膨胀系数, 为6.8×10-6K-1, 其热导率最高;MBD4等级的金刚石颗粒与铝基体存在选择性粘附现象, 金刚石的(100)面更容易与铝结合。
标    签 金刚石/铝复合材料   真空压力浸渗   热膨胀系数   热导率   界面结合   diamond/Al composite   vacuum pressure infiltration   thermal expansion coefficient   thermal conductivity   interface bonding  
 
Abstract
Diamond/Al composites were fabricated by vacuum pressure infiltration method. The thermal properties of the composites with different particle sizes and grades were investigated. The results show that the thermal expansion coefficient of the composite decreased with the decrease of particle size of common grinded diamond when the volumn fraction of diamond did not change. The thermal expansion coefficient of the composite made of MBD4 grade diamonds was 6.8×10-6K-1, which was the lowest among all the composites, and the thermal conductivity of the composite was the highest. The phenomenon of selective adhesion between MBD4 grand diamond and aluminum matrix was observed, and (100) face of the diamond was inclined to combine with the pure aluminum.

中图分类号 TB333

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家重点基础研究发展计划项目(2012CB619600);国家高技术研究发展计划项目(2013AA031201)

收稿日期 2013/8/16

修改稿日期 2014/7/2

网络出版日期

作者单位点击查看

备注裴和君(1989-),男,江苏宜兴人,硕士研究生。

引用该论文: PEI He-jun,OUYANG Qiu-bao,ZHANG Di,YU Hong,LIU Yun-meng. Fabrication and Thermal Properties of Diamond/Al Composites Prepared by Vacuum Pressure Infiltration Method[J]. Materials for mechancial engineering, 2014, 38(12): 6~9
裴和君,欧阳求保,张荻,虞红. 真空压力浸渗法制备金刚石/铝复合材料及其热性能[J]. 机械工程材料, 2014, 38(12): 6~9


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】方明, 王爱琴, 谢敬佩, 等. 电子封装材料的研究现状及发展[J].热加工工艺,2011,40(4):84-87.
 
【2】YAMAMOTO Y, IMAI T, TANABE K, et al. The measurement of thermal properties of diamond[J].Diamond and Related Materials,1997,6(8):1057-1061.
 
【3】刘永正, 崔岩. 超高导热金刚石/铝复合材料研究 [C]//第七届中国功能材料及其应用学术会议论文集: 第3分册. [出版地不详]: 《功能材料》期刊社,2010:439-441.
 
【4】TONG Zhen-song, SHEN Zhuo-shen, ZHANG Yu-juan. Aluminum/diamond composites and their applications in electronic packaging[C]//Electronic Packaging Technology,2007.[S.l.]:IEEE,2007:1-7.
 
【5】BEFFORT O, VAUCHER S, KHALID F A. On the thermal and chemical stability of diamond during processing of Al/diamond composites by liquid metal infiltration (squeeze casting)[J].Diamond and Related Materials,2004,13(10):1834-1843.
 
【6】KHALID F A, BEFFORT O, KLOTZ U E, et al. Microstructure and interfacial characteristics of aluminium-diamond composite materials[J].Diamond and Related Materials,2004,13(3):393-400.
 
【7】SCHBEL M, DEGISCHER H P, VAUCHER S, et al. Reinforcement architectures and thermal fatigue in diamond particle-reinforced aluminum[J].Acta Materialia,2010,58(19):6421-6430.
 
【8】熊德赣,刘希从,鲍小恒,等.AlSiC 电子封装基片的制备与性能[J].中国有色金属学报,2006,16(11):1913-1917.
 
【9】KLEINER S, KHALID F A, RUCH P W, et al. Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminium[J].Scripta Materialia,2006,55(4):291-294.
 
【10】MONJE I E, LOUIS E, MOLINA J M. Aluminum/diamond composites: a preparative method to characterize reactivity and selectivity at the interface[J].Scripta Materialia, 2012, 66(10): 789-792.
 
【11】LU W C, ZHANG R Q. Simulation of diamond metallization using aluminum[J].Diamond and Related Materials,2003,12(9):1553-1558.
 
【12】COLLINS K C, CHEN S, CHEN G. Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces[J].Applied Physics Letters,2010,97(8):083102-1-083102-3.
 
【13】TAN Z, LI Z, FAN G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J].Materials & Design, 2013, 47: 160-166.
 
【14】LIANG X, JIA C, CHU K, et al. Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings[J].Rare Metals,2011,30(5):544-549.
 
【15】欧阳求保,崔光华,张荻,等.深冷处理对 SiCp增强铝基复合材料热膨胀性能的影响[J].机械工程材料,2010,34(2):18-20.
 
【16】CUI Y, XU S B, ZHANG L, et al. Microstructure and thermal properties of diamond-Al composite fabricated by pressureless metal infiltration[J].Advanced Materials Research,2011,150:1110-1118.
 
【17】RUCH P W, BEFFORT O, KLEINER S, et al. Selective interfacial bonding in Al (Si)-diamond composites and its effect on thermal conductivity[J].Composites Science and Technology, 2006, 66(15): 2677-2685.
 
【18】王新宇,于家康,朱晓敏.镀 TiC 金刚石/铝复合材料的界面及热膨胀性能[J].中国有色金属学报,2012,22(6):1718-1724.
 
【19】CHEN N, PAN X F, GU M Y. Microstructure and physical properties of Al/diamond composite fabricated by pressureless infiltration[J].Materials Science and Technology,2009,25(3):400-402.
 
【20】JOHNSON W B, SONUPARLAK B. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process[J].Journal of Materials Research,1993,8(5):1169-1173.
 
相关信息
   标题 相关频次
 (Sm0.5Nd0.5)3Ce7Ta2O23.5和(Yb0.5Dy0.5)3Ce7Ta2O23.5氧化物的热物理性能
 4
 14%SiC/7A04铝基复合材料的加工图
 4
 不同固化压力下制备碳纤维增强铝层板的拉伸性能
 4
 热障涂层用新型复合氧化物的制备及其热物理性能
 4
 深冷处理对SiC>p增强铝基复合材料热膨胀性能的影响
 4
 双相高熵陶瓷(La0.2Eu0.2Gd0.2Y0.2Yb0.2)2Zr2O7的制备与热物理性能
 4
 Al2O3连续增强铝基复合材料的干摩擦磨损特性
 2
 KI体系下制备纯银镀层和纯银/银石墨复合镀层的性能
 2
 SiO2微粉加入量对焦宝石基喷涂耐火材料抗热震性能的影响
 2
 TiB和TiC对TiAl基金属间化合物显微组织和拉伸性能的影响
 2
 玻璃含量对低温烧结硼硅酸盐玻璃-AlN陶瓷复合材料性能的影响
 2
 不同含量Al2O3微粒改性环氧树脂复合材料的导热和导电特性
 2
 磁控溅射法制备ZrW2O8薄膜及其性能
 2
 导电薄膜热膨胀系数实时测试系统
 2
 导体材料涡流热成像应力检测的仿真
 2
 电阻瞬态法测定材料的传热性能
 2
 顶杆法热膨胀系数测试在材料性能研究中的应用
 2
 反应烧结制备AlON-AlN复相陶瓷及其性能
 2
 高导热碳化硅陶瓷的研究进展
 2
 光子晶体结构TiO2薄膜的制备及其染料电池性能
 2
 晶化温度对Li2O-ZnO-Al2O3-SiO2微晶玻璃物相组成和热膨胀系数的影响
 2
 聚乙烯醇水溶胶辅助制备碳纳米管/铝复合粉体及表征
 2
 锂离子电池负极用硅/碳纳米复合材料制备方法和性能的研究进展
 2
 铝含量对TB5钛合金组织和力学性能的影响
 2
 纳米结构金属氧化物气敏材料的研究进展
 2
 热处理参数对锂锌硅系微晶玻璃中方石英相含量的影响
 2
 热导性电绝缘界面材料热传输特性参数的测量
 2
 热氢处理对 (TiB, TiC)/Ti1100复合材料显微组织和相变点的影响
 2
 热氢处理对(TiB, TiC)/Ti-6Al-4V复合材料显微组织和力学性能的影响
 2
 烧结助剂La2O3含量对热压烧结制备Si3N4-AlN复相陶瓷性能的影响
 2