搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
先进高强度钢氢脆的研究进展
          
Research Progress on Hydrogen Embrittlement in Advanced High Strength Steels

摘    要
综述了先进高强度钢氢脆的研究进展, 重点介绍了双相钢、相变诱发塑性钢、孪生诱发塑性钢、淬火-配分钢等材料中的氢脆特征、断裂模式、断口形貌特点以及相关的断裂机制, 为揭示先进高强度钢的氢脆机理及提出相应的预防措施提供参考。
标    签 氢脆   双相钢   相变诱发塑性钢   孪生诱发塑性钢   淬火-配分钢   hydrogen embrittlement   dual-phase (DP) steel   transformation-induced plasticity (TRIP) steel   twinning-induced plasticity (TWIP) steel   quenching & partitioning (Q&P) steel  
 
Abstract
The research progress on hydrogen embrittlement in advanced high strength steel (AHSS), especially in dual-phase (DP) steel, transformation-induced plasticity (TRIP) steel, twinning-induced plasticity (TWIP) steel and quenching & partitioning (Q&P) steel, were briefly summarized. The hydrogen embrittlement features, fracture model, fractography and related fracture mechanism of these steels under the hydrogen environment were described in detail so as to provide reference for further research on mechanism of hydrogen embrittlement and relative prevention methods.

中图分类号 TG142   DOI 10.11973/jxgccl201508001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金重点(51031001)和面上(51071101)资助项目

收稿日期 2014/3/10

修改稿日期 2015/4/1

网络出版日期

作者单位点击查看

备注罗洁(1989-), 男, 湖南岳阳人, 硕士研究生。

引用该论文: LUO Jie,GUO Zheng-hong,RONG Yong-hua. Research Progress on Hydrogen Embrittlement in Advanced High Strength Steels[J]. Materials for mechancial engineering, 2015, 39(8): 1~9
罗洁,郭正洪,戎咏华. 先进高强度钢氢脆的研究进展[J]. 机械工程材料, 2015, 39(8): 1~9


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】徐祖耀.自主创新发展超高强度钢[J].上海金属,2009,31(2): 1-6.
 
【2】徐祖耀.我国应尽早发展高强度钢[C]//中国工程院化工,冶金与材料工程学部第六届学术会议论文集.北京: 化学工业出版社,2007: 403-406.
 
【3】马鸣图,易红亮,路洪洲,等.论汽车轻量化[J].中国工程科学,2009,11(9): 20-27.
 
【4】马鸣图,易红亮.高强度钢在汽车制造中的应用[J].热处理,2011, 26(6): 9-20.
 
【5】张柯,许为宗,郭正洪,等.新型QPT和传统QT工艺对不同C含量马氏体钢组织和力学性能的影响[J].金属学报,2011,47(4): 489-496.
 
【6】JOHNSON W H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Proceedings of the Royal Society of London, 1874, 23(156/163 ): 168-179.
 
【7】褚武扬.氢损伤和滞后断裂[M].北京: 冶金工业出版社,1988.
 
【8】LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.
 
【9】BLECK W, PHIU-ON K. Microalloying of cold-formable multi phase steel grades[J]. Materials Science Forum, 2005, 500/501: 97-114.
 
【10】马鸣图,吴宝榕.双相钢-物理和力学冶金[M].北京: 冶金工业出版社,1988.
 
【11】田志强,唐荻,江海涛,等.汽车用双相钢的研究与生产现状[J].机械工程材料,2009, 33(4): 1-5.
 
【12】DAVIES R G. Hydrogen embrittlement of dual-phase steels[J]. Metallurgical Transactions: A,1981, 12(9): 1667-1672.
 
【13】寿大云,王天宰,陈南平.双相钢的氢脆特性和断裂特征[J].兵器材料科学与工程,1987( 5): 1-7.
 
【14】FUCHIGAMI H, MINAMI H,NAGUMO M. Effect of grain size on the susceptibility of martensitic steel to hydrogen-related failure[J].Philosophical Magazine Letters, 2006, 86(1): 21-29.
 
【15】惠卫军,董瀚,翁宇庆,等.超细晶粒高强度钢的延迟断裂行为[J].金属学报,2004, 40(6): 561-568.
 
【16】孙曙明,顾家琳,陈南平.TEM研究氢对双相组织的影响[J].金属科学与工艺,1990, 9(2): 33-38.
 
【17】HADZIPASIC A B, MALINA J, NIZNIK S. The influence of microstructure on hydrogen diffusion in dual phase steel[J].Acta Metallurgica Slovaca, 2011, 17(2): 129-137.
 
【18】DUPREZ L, VERBEKEN K, VERHAEGE M. Effect of hydrogen on the mechanical properties of multiphase high strength steels[C]//Proceedings international conference on effects of hydrogen on materials. [S.l]: ASM International, 2009: 62-69.
 
【19】WILDE B E, KIM C D, PHELPS E H. Some observations on the role of inclusions in the hydrogen included blister cracking of linepipe steels in sulfide environments[J]. Corrosion, 1980, 36(11): 625-632.
 
【20】DOMIZZI G, ANTERI G, OVEJERO-GARCIA J. Influence of sulphur content and inclusion distribution on the hydrogen induced blister cracking in pressure vessel and pipeline steels[J]. Corrosion Science, 2001, 43(2): 325-339.
 
【21】PREZ ESCOBAR D, MINAMBRES C, DUPREZ L, et al. Internal and surface damage of multiphase steels and pure iron after Electrochemical hydrogen charging[J]. Corrosion Science, 2011, 53(10): 3166-3176.
 
【22】MCCOY R A, GERBERICH W W. Hydrogen embrittlement studies of a TRIP steel[J]. Metallurgical Transactions, 1973, 4(2): 539-547.
 
【23】RONEVICH J A, SPEER J G, MATLOCK D K. Hydrogen embrittlement of commercially produced advanced high strength sheet steels[J]. SAE International Journal of Materials & Manufacturing, 2010, 3(1): 255-267.
 
【24】RONEVICH J A, DE COOMAN B C, SPEER J G,et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metallurgical and Materials Transactions: A,2012, 43(7): 2293-2301.
 
【25】PEREZ ESCOBAR D, DEPOVER T, DUPREZ L. Combined thermal desorption spectroscopy,differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Materialia, 2012, 60(6): 2593-2605.
 
【26】李依依,范存淦,戎利建,等.抗氢脆奥氏体钢及抗氢铝[J].金属学报,2010, 46(11): 1335-1346.
 
【27】RYU J H, CHUN Y S, LEE C S,et al. Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel[J].Acta Materialia, 2012, 60(10): 4085-4092.
 
【28】RYU J H. Hydrogen embrittlement in TRIP and TWIP steels[D]. Korea: Pohang University of Science and Technology, 2012.
 
【29】PEREZ ESCOBAR D, VERBEKEN K, DUPREZ L. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy[J]. Materials Science and Engineering: A, 2012, 551: 50-58.
 
【30】TAU L, CHAN S L I, SHIN C S. Hydrogen enhanced fatigue crack propagation of bainitic and tempered martensitic steels[J]. Corrosion Science, 1996, 38(11): 2049-2060.
 
【31】王晓东,王利,戎咏华.TRIP钢研究的现状与发展[J].热处理,2009, 23(6): 8-19.
 
【32】GRASSEL O, KRUGER L, FROMMEYER G, et al. High strength Fe-Mn-(Al,Si) TRIP/TWIP steels development-properties-application [J]. International Journal of Plasticity, 2000, 16(10): 1391-1409.
 
【33】MITTAL S C, PRASAD R C. Effect of hydrogen on fracture of austenitic Fe-Mn-C steel[J]. ISIJ International,1994, 34(2): 211-216.
 
【34】RONEVICH J A, KIM S K, SPEER J G, et al. Hydrogen effects on cathodically charged twinning-induced plasticity steel[J].Scripta Materialia, 2012, 66(12): 956-959.
 
【35】KOYAMA M, AKIYAMA E, TSUZAKI K.Effect of hydrgen content on the embrittlement in a Fe-Mn-C twinning-induced plasticity steel[J]. Corrosion Science, 2012, 59: 277-281.
 
【36】KOYAMA M, SAWAGUCHI T, LEE T, et al. Work hardening associated with ε-martensitic transformation, deformation twinning and dynamic strain aging in Fe-17Mn-0.6 C and Fe-17Mn-0.8 C TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(24): 7310-7316.
 
【37】KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-induced cracking at grain and twin boundaries in an Fe-Mn-C austenitic steel[J]. Scripta Materialia, 2012, 66(7): 459-462.
 
【38】KOYAMA M, AKIYAMA E, TSUZAKI K, et al. Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging[J]. Acta Materialia,2013, 61(12): 4607-4618.
 
【39】SO K H, KIM J S, CHUN Y S, et al. Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe-18Mn-1.5Al-0.6C TWIP Steel[J]. ISIJ International,2009, 49(12): 1952-1959.
 
【40】MULLNER P, SOLENTHALER C, UGGOWITZER P J, et al. Brittle fracture in austenitic steel[J]. Acta Metallurgica et Materialia,1994,42(7): 2211-2217.
 
【41】MAHAJAN S, CHIN G Y. Twin-slip, twin-twin and slip-twin interactions in Co-8 wt.% Fe alloy single crystals[J]. Acta Metallurgica et Materialia, 1973, 21(2): 173-179.
 
【42】WANG Y B, SUI M L. Atomic-scale in situ observation of lattice dislocations passing through twin boundaries[J].Applied Physics Letters,2009, 94: 021909(1-3).
 
【43】ADLER P H, OLSON G B, OWEN W S. Strain hardening of hadfield manganese steel[J]. Metallurgical and Materials Transactions: A,1986,17(10): 1725-1737.
 
【44】DE COOMAN B C, CHIN K G, KIM J. High Mn TWIP steels for automotive applications[M]// CHIABERGE M. New Trends and Developments in Automotive System Engineering. [S.l.]: In Tech, 2011: 101-128.
 
【45】CHIN K G, KANG C Y, SHIN S Y, et al. Effect of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels[J]. Materials Science and Engineering: A, 2011, 528(6): 2922-2928.
 
【46】KOYAMA M, AKIYAMA E. Hydrogen embrittlement in Al-added twinning-induced plasticity steels evaluated by tensile tests during hydrogen charging[J]. ISIJ International, 2012, 52(12): 2283-2287.
 
【47】DUMAY A, CHATEAU J P, ALLAIN S,et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-C steel[J]. Materials Science and Engineering: A, 2008, 483: 184-187.
 
【48】KIM J, LEE S J, DE COOMAN B C. Effect of Al on the stacking fault energy of Fe-18Mn-0.6C twinning-induced plasticity[J]. Scripta Materialia, 2011, 65(4): 363-366.
 
【49】PARK I J, JEONG K H, JUNG J G. The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe-18Mn-0.6C twinning-induced Plasticity steels[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9925-9932.
 
【50】SPEER J G, EDMONDS D V,RIZZO F C. Partitioning of carbon from supersaturated plates of ferrite, with application to steel Processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science, 2004, 8(3): 219-237.
 
【51】LOVICU G, BAGLIANI E P, DE SANCTIS M, et al. Hydrogen embrittlement of a medium carbon Q&P steel[J]. Metallurgical Italiana,2013(6): 3-10.
 
【52】LOIDL M, KOLK O, VEITH S, et al. Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwissenschaft und Werkstofftechnik, 2011, 42(12): 1105-1110.
 
相关信息
   标题 相关频次
 表面凹槽形态对Q-P-T钢成形能力预测的影响
 4
 1018钢螺钉断裂失效分析
 2
 12.9级内六角圆柱螺栓断裂失效分析
 2
 252 kV GIS机构止动螺栓的断裂失效分析
 2
 30CrMnSiA螺栓失效分析
 2
 30CrMnSiNi2A钢轮轴表面镀硬铬区域开裂的原因及控制措施
 2
 40CrNiMoA高强钢氢脆敏感性和氢含量的关系
 2
 40Cr钢紧固螺栓断裂原因分析
 2
 45号钢在硫化氢水溶液中的腐蚀行为
 2
 60Si2MnA钢片弹簧断裂失效分析
 2
 60Si2Mn钢弹簧断裂原因
 2
 65Mn钢弹簧垫圈开裂原因分析
 2
 LNG储罐海水试压过程中9Ni钢的阴极保护电位
 2
 Maraging(C) 350钢扭杆断裂试验
 2
 S355ML+Z35钢板厚度方向性能不合格原因分析
 2
 SWRCH15A钢螺钉断裂原因分析
 2
 TU2铜管泄漏原因分析
 2
 X70钢和X80钢在鹰潭土壤模拟溶液中的氢脆敏感性
 2
 X80钢在新疆不同土壤环境中的氢脆行为
 2
 X80管线钢的氢脆性能
 2
 X80管线钢在含氢煤制气环境中的氢脆敏感性
 2
 贝氏体车轮钢的氢脆敏感性
 2
 叉车主动锥齿轮断裂原因分析
 2
 车用六角头螺栓断裂原因
 2
 纯铁经表面机械研磨处理后微结构参量的表征
 2
 淬火-配分-回火工艺处理低碳低合金钢的氢脆敏感性
 2
 弹簧断裂原因分析
 2
 弹性圆柱销开裂失效分析
 2
 电化学充氢前后304L奥氏体不锈钢的塑性对比
 2
 镀锌螺钉断裂分析
 2