搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
粉末冶金高致密化高速压制技术的研究进展
          
Research Progress of High Velocity Compaction Technology for High Densification of Powder Metallurgy

摘    要
高速压制技术是传统粉末压制成型技术一种极限式外延的结果,被认为是粉末冶金工业寻求低成本高密度材料加工技术的又一次新突破.高速压制是一项以较低成本(与传统模压一样)、高效率制备高密度(7.4~7.8 g·cm-3)粉末冶金制品的新技术,可实现多重压制,具有使用中小型设备生产较大制品的能力.简要介绍了该技术的基本原理、主要特点及最新研究进展,最后指出该技术目前存在的问题并指出未来的发展方向.
标    签 粉末冶金   高速压制   致密化   压制方程   powder metallurgy   high velocity compaction   densification   compaction equation  
 
Abstract
High velocity compaction (HVC) is an extreme extension for conventional powder pressing technology and is another breakthrough in the powder metallurgy (PM) industry for low-cost and high-density forming parts.HVC is a new manufacturing technique for producing high density (7.4-7.8 g·cm-3) PM parts efficiently at low cost (similar to conventional pressing) and it can offer multi-impacts and the opportunity to use moderately sized equipment for compacting very large components.This paper focuses on the basic principle,main characteristics and current progress of HVC.Some problems existing and research interests in the future are pointed out.

中图分类号 TB44

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家“973”计划资助项目(2006CB605207);国家自然科学基金重点资助项目(50634010);教育部长江学者和创新团队发展计划资助项目(I2P407)

收稿日期 2007/9/18

修改稿日期 2008/1/22

网络出版日期

作者单位点击查看

备注王建忠(1980-),男,内蒙古包头人,博士研究生.

引用该论文: WANG Jian-zhong,QU Xuan-hui,YIN Hai-qing,ZHOU Sheng-yu,YI Ming-jun. Research Progress of High Velocity Compaction Technology for High Densification of Powder Metallurgy[J]. Materials for mechancial engineering, 2008, 32(9): 5~8
王建忠,曲选辉,尹海清,周晟宇,易明军. 粉末冶金高致密化高速压制技术的研究进展[J]. 机械工程材料, 2008, 32(9): 5~8


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Caroline E.Hgans promotes potential of high velocity compaction[J].Metal Powder Report,2001,56(9):6-9.
 
【2】Skoglund P.High density PM parts by high velocity compaction[J].Powder Metallurgy,2001,44(3):199-201.
 
【3】Richard F.HVC punches PM to new mass production limits[J].Metal Powder Report,2002,57(9):26-30.
 
【4】Orban R L.New research directions in powder metallurgy[J].Romanian Reports in Physics,2004,56(3):505-516.
 
【5】沈元勋,肖志瑜,温利平,等.粉末冶金高速压制技术的原理、特点及其研究进展[J].粉末冶金工业,2006,16(3):19-23.
 
【6】Sethi G,Hauck E,German R M.High velocity compaction compared with conventional compaction[J].Materials Science and Technology,2006,22(8):955-959.
 
【7】A new line in HVC[J].Metal Powder Report,2004,59(10):5-8.
 
【8】迟悦,果世驹,孟飞,等.粉末冶金高速压制成形技术[J].粉末冶金工业,2005,15(6):41-45.
 
【9】Dore F,Lazzarotto L,Bourdin S.High velocity compaction:overview of materials,applications and potential[J].Materials Science Forum,2007,534/536:293-296.
 
【10】Aslund C.High velocity compaction of stainless steel gas atomized powder[C]//Herbert D,Raimund R.Euro PM 2004 Conference Proceedings.Shrewsbury UK:EPMA,2004:553-557.
 
【11】Skoglund P.High density PM components by high velocity compaction[C]//Volker Arnhold,Chiu-Lung Chu,William F Jandeska,Jr.,et al.2001 International conference on Power Transmission Components.Ypsilanti:Metal Powder Industries Federation,2001:16-17.
 
【12】Skoglund P.High-Density PM Components by High Velocity Compaction[C]//Volker Arnhold,Chiu-Lung Chu,William F Jandeska,Jr.,et al.Advance in Powder Metallurgy & Particulate Materials-2002.New Jersey:Metal Powder Industries Federation,2002:86-95.
 
【13】Ericsson T,Luukkonen P.Residual stresses in green bodies of steel powder after conventional and high speed compaction[J].Materials Science Forum,2002,404/407:77-82.
 
【14】Doremus P,Duwa F,Francois P.High velocity compaction[C]//Volker Arnhold,Chiu-Lung Chu,William F Jandeska,Jr.,et al.Advance in Powder Metallurgy & Particulate Materials-2002.New Jersey:Metal Powder Industries Federation,2002:96-110.
 
【15】Ingrid H,Mats L,Ulf E.Properties of high-strength PM materials obtained by different compaction methods in combination with high temperature sintering[C]//Volker Arnhold,Chiu-Lung Chu,William F Jandeska,Jr.,et al.Advance in Powder Metallurgy & Particulate Materials-2002,New Jersey:Metal Powder Industries Federation,2002:111-120.
 
【16】Andersson O.High velocity compaction of soft magnetic composites[C]//2002 World Congress on Powder Metallurgy & Particulate Materials-2002.Orlando:FI,2002:6-18.
 
【17】Bruska A,Bengt S,Leif K.Development of a High-Velocity Compaction process for polymer powders[J].Polymer Testing,2005,24(4):909-919.
 
【18】Superior Control of Density and Tolerances.http://www.hydropulsor.com/HVC_Density_&_Tolerances.html
 
【19】Jonsén P,Hggblad H-,Troive L,Furuberg J,Allroth S,Skoglund P.Green body behavior of high velocity pressed metal powder[J].Materials Science Forum,2007,534/536:289-292.
 
【20】黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982:172-182.
 
【21】陈振华.金属粉末动态成形的理论研究[D].长沙:中南工业大学,1988:20-21.
 
【22】果世驹,迟悦,孟飞,等.粉末冶金高速压制成形的压制方程[J].粉末冶金材料科学与工程,2006,11(1):24-27.
 
【23】Gunaar S.Powders and materials in future PM applications[C]//The Forum of Powder Metallurgy.Beijing:[s.n] 2002:15-21.
 
相关信息
   标题 相关频次
 放电等离子烧结工艺制备致密碳化硅陶瓷
 3
 3%C-Cu机械球磨复合粉末的热挤压致密化工艺
 2
 316L不锈钢粉的流动温压成型工艺
 2
 Rietveld全谱拟合方法定量测定GCr15粉末冶金试样中的残余奥氏体含量
 2
 SiC含量对注射成形SiCp/Cu复合材料磨损性能的影响侯
 2
 不同铬含量铁基粉末烧结锻造钢的显微组织与性能
 2
 采用喷撒工艺制备铁基粉末冶金摩擦材料
 2
 电场活化烧结温度场的数值模拟
 2
 粉末挤压成型制备SiCp/Al复合材料的显微组织及性能
 2
 粉末冶金法制备镁-硅-锆合金的组织及性能
 2
 粉末冶金工艺制备不锈钢的研究进展
 2
 粉末冶金排气门座圈失效分析
 2
 粉末冶金原位合成(Ti,W)C增强铁基复合材料
 2
 粉末注射成形充模过程特有边界层效应的数值模拟
 2
 粉末注射成型过程的双流体数学模型
 2
 高速列车铜基粉末冶金闸片的制备及摩擦磨损性能
 2
 工业生产条件下烧结温度对粉末冶金Fe-Cu-C合金组织和性能的影响
 2
 硅添加量对Ni-5Al高温合金高温抗氧化性能的影响
 2
 含二硫化钼镍铬基高温复合材料的高温氧化行为
 2
 加压渗透对3D打印氧化铝陶瓷性能的影响
 2
 快速凝固结合粉末冶金法制备Al2O3颗粒增强AZ91镁基复合材料的组织与力学性能
 2
 铝含量对粉末冶金制备镁铝锆合金组织和力学性能的影响
 2
 钼加入量对Fe-2Cu-0.8C系烧结合金组织和性能的影响
 2
 钼添加量对Ni-8Al高温合金高温抗氧化性能的影响
 2
 铍铝合金显微组织的评定方法
 2
 热镀铝锌硅镀层凸点缺陷组织分析及生产工艺优化
 2
 热挤压对粉末冶金6061铝合金显微组织和抗拉强度的影响
 2
 热挤压对粉末冶金PM-0002镍基高温合金组织及热变形行为的影响
 2
 烧结温度对316不锈钢粉末冶金烧结体组织和性能的影响
 2
 烧结温度对粉末冶金Al-24Si合金组织与性能的影响
 2