搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
基于碳纳米管压阻效应的复合材料结构健康监测技术
          
Structure Health Monitoring Technology for Composites Based on Piezoresistive Effect of Carbon Nanotubes

摘    要
复合材料结构健康监测技术是一个重要的发展方向, 不断出现新的监测方法, 而碳纳米管(CNT)因具有优越的传感特性得到了广泛的关注。介绍了碳纳米管及其压阻效应的形成机理, 并总结了碳纳米管膜所具有的压阻特性及其相关的应用研究进展, 设计了利用碳纳米管压阻效应制成的聚合物薄膜传感器在复合材料结构健康监测(SHM)中进行应用的研究方案。其中, 传感器采用表面贴覆的方法和阵列式监测原理, 结合特征提取、模式识别等信号处理方法, 实现对复合材料的早期损伤及其类型进行预测、识别和定位等功能。
标    签 碳纳米管   压阻效应   复合材料   结构健康监测   Carbon nanotube   Piezoresistive effect   Composites   Structure health monitoring  
 
Abstract
Structure health monitoring technology for composites is an important development direction and new monitoring methods are emerged. Carbon nanotubes(CNTs) have been widely studied because of their excellent sensors properties. This paper introduces the mechanism of piezoresistive effect of CNTs, and summarizes the piezoresistive properties of CNTs film and researches of the related applications. The paper then designs the experimental solution of the structural health monitoring(SHM) of composites using CNT polymer film sensors based on the piezoresistive effect. Sensors based on matrix-monitoring principle are pasted on surface. Signal processing methods with feature extraction and pattern recognition are used to predict, identify and locate early failure and the failure style of composites.

中图分类号 TG115.28

 
  中国光学期刊网论文下载说明


所属栏目 2010年远东无损检测论坛论文精选

基金项目

收稿日期

修改稿日期

网络出版日期

作者单位点击查看

备注朱永凯(1975-), 博士, 副教授, 主要研究方向为结构健康监测、智能传感技术。

引用该论文: ZHU Yong-Kai,CHEN Sheng-Piao,TIAN Gui-Yun,PAN Ren-Qian,WANG Hai-Tao. Structure Health Monitoring Technology for Composites Based on Piezoresistive Effect of Carbon Nanotubes[J]. Nondestructive Testing, 2010, 32(9): 664~669
朱永凯,陈盛票,田贵云,潘仁前,王海涛. 基于碳纳米管压阻效应的复合材料结构健康监测技术[J]. 无损检测, 2010, 32(9): 664~669


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】Housner G W. Structural control: past, present, and future[J]. Journal of Engineering Mechanics, 1997, 123(9): 897-971.
 
【2】樊尚春. 传感器技术及应用[M].北京: 北京航空航天大学出版社, 2004.
 
【3】Chang L.微机电系统基础[M].黄庆安, 译.北京: 机械工业出版社, 2007.
 
【4】Spitalsky Z. Carbon nanotube– polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Progress in Polymer Science, 2010, 35(3): 1-45.
 
【5】Galanov B A, Galanov S B. Stress-strain state of multi-wall carbon nanotube under internal pressure[J]. Nano-particle Res, 2002(4): 207-214.
 
【6】Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991(354): 56-58.
 
【7】Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1 nm diameter[J]. Nature, 1993(363): 603-605.
 
【8】Functionalised carbon nanotubes as therapeutic vectors[EB/OL]. http: //www-ibmc.u-strasbg.fr/ict/vectorisation/nanotubes_eng.shtml.
 
【9】Pham G T. Characterization and modeling of piezo-resistive properties of carbon nanotube-based conductive polymer composites[D]. Florida: Florida State University, 2008.
 
【10】Dang ZM. Supersensitive linear piezoresistive property in carbon nanotubes∕silicone rubber nanocomposites[J]. Applied Physics, 2008, 104(2): 024114-024114-6.
 
【11】Cao C L. Temperature dependent piezoresistive effect of multi-walled carbon nanotube films[J]. Diamond & Related Materials, 2007, 16(2): 388-392.
 
【12】Park M. Strain dependent electrical resistance of multi-walled nanotube/polymer composite films[J]. Nanotechnology, 2008, 19(5): 5705-5712.
 
【13】Pham G T. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing[J]. Composites: Part B, 2008, 39(1): 209-216.
 
【14】Kang I. Introduction to carbon nanotubes and nanofiber smart materials[J]. Composites: Part B, 2006, 37(6): 382-394.
 
【15】Kang I. The bulk piezoresistive characteristics of carbon nanotube composites for strain sensing of structures[J]. Nanoscience and Nanotechnology, 2007, 7(11): 3736-3739.
 
【16】Song X. Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing[J]. Microelectronic Engineering, 2009, 86: 2330-2333.
 
【17】张毅.碳纳米管膜的压阻效应及其相关力学性质研究[D].重庆: 重庆大学, 2005.
 
【18】Gau C. Piezoresistive characteristics of MWNT nanocomposites and fabrication as a polymer pressure sensor[J]. Nanotechnology, 2009, 20(18): 1-11.
 
【19】韩向宇.管径相关的多壁碳纳米管膜的压阻效应[J].功能材料, 2007, 38(2): 323-325.
 
【20】韩向宇.功能化碳纳米管及其性质研究[D].重庆: 重庆大学, 2007.
 
【21】Tombler T W. Reversible electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipulation[J]. Nature, 2000, 405: 769-772.
 
【22】Vidhate S. Time dependent piezoresistive behavior of polyvinylidene fluoride/carbon nanotube conductive composite[J]. Materials Letters, 2009, 63(21): 1771-1773.
 
【23】Jain S. Building smart materials based on carbon nanotubes[J]. Smart Structures and Materials 2004: Smart Electronics, Mems, Biomems and Nanotechnology, 2004, 5389: 167-175.
 
【24】Kang I. Carbon Nanotube Smart Materials[D]. USA: University of Cincinnati, 2005.
 
【25】Kang I. A carbon nanotube strain sensor for structural health monitoring[J]. Smart Materials & Structures, 2006, 15: 737-748.
 
【26】Kang I. Carbon Nanotube Composites Multi-Sensing Characteristics Based on Electrical Impedance Properties[C]. 2nd International Conference on Nanoscale Materials and Engineering, 2008, 9: 7364-7367.
 
【27】Nofar M. Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks[J]. Composites Science and Technology, 2009, 69(10): 1599-1606.
 
【28】Schulz M J, Sundaresan M J. Smart Sensor System for Structural Conditon Monitoring of Wind Turbines[R]. National Renewable Energy Laboratory, 2006.
 
相关信息
   标题 相关频次
 基于声发射传感器阵列的风机叶片结构健康监测方法
 9
 基于强度型光纤传感技术的复合材料薄板损伤声发射定位法
 6
 面向钢轨的无线结构健康监测的挑战与应用
 5
 巴克豪森应力检测中激励方式的影响
 4
 超声相控阵声束控制特性分析
 4
 钢轨表面缺陷漏磁检测的三维磁场分析
 4
 钢轨裂纹高速漏磁巡检中的动态磁化及速度效应分析
 4
 钢轨漏磁检测的速度效应
 4
 钢轨疲劳斜裂纹垂向磁化检测仿真
 4
 钢轨疲劳斜裂纹垂向磁化检测仿真
 4
 高速漏磁检测中钢轨磁化强度的研究
 4
 高速铁路钢轨电磁检测试验
 4
 基于BP神经网络的巴克豪森铁轨温度应力检测
 4
 基于巴克豪森效应的钢轨表面应力研究
 4
 基于波速分析的激光超声检测技术
 4
 基于漏磁信号的钢轨斜裂纹识别
 4
 激光超声技术及其应用
 4
 金属磁记忆累积机理
 4
 脉冲涡流检测技术的研究
 4
 脉冲涡流无损检测技术的研究进展
 4
 脉冲涡流阵列缺陷成像检测技术
 4
 小波变换在缺陷红外图像去噪中的应用
 4
 包覆镍CNTs/AM60复合材料铸态显微组织与力学性能
 3
 包覆镍的碳纳米管增强AZ91镁基复合材料的显微组织与力学性能
 3
 复合材料分层缺陷的激光超声检测
 3
 钢轨损伤的无线传感网络监测系统
 3
 高速剪切对碳纳米管/环氧树脂复合材料导电性能的影响
 3
 3D打印碳纳米管与聚合物复合材料的焊接
 2
 CNTs/AZ91复合材料的摩擦磨损性能
 2
 RPV辐照脆化巴克豪森噪声检测的二维仿真
 2