搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
以山茶花瓣为模板合成多孔片层结构MnO2及其电化学性能
          
Preparation and Electrochemical Properties of Lamellar Porous MnO2 Synthesized by Using Camellia Petal as Biotemplates

摘    要
以山茶花瓣为模板, 以0.01,0.03,0.05,0.10 mol·L-1 MnNO3溶液为前驱体, 采用浸渍煅烧的方法合成了具有山茶花瓣微观形貌的多孔片层状MnO2, 并对它的结构和形貌进行了表征; 然后将MnO2作为负极材料安装成扣式锂离子电池, 测定了MnO2的电化学特性。结果表明: 合成的MnO2中均含有α、β和ε晶型的MnO2; 随着前驱体溶液浓度由0.01 mol·L-1增至0.10 mol·L-1, 制备的MnO2的比表面积由8.81 cm2·g-1增至39.82 cm2·g-1, 孔容由0.08 cm3·g-1增至0.26 cm3·g-1; 电池的首次库伦效率均大于22.56%, 经过10次循环后的可逆容量仍能保持70 mAh·g-1。
标    签 山茶花瓣   二氧化锰   多孔结构   生物模板   锂离子电池   电化学性能   camellia petal   MnO2   porous structure   biological template   lithium-ion battery   electrochemical property  
 
Abstract
The biomorphic MnO2 materials with lamellar porous structure were successfully synthesized by using camellia petal as biotemplate and MnNO3 solution of 0.01,0.03,0.05,0.10 mol·L-1 as precursor. Their structure and morphology were characterized. And then lithium-ion battery was assembled by using MnO2 as negative electrode material, the electrochemical properties of MnO2 was tested. Results show that all MnO2 contained α, β and ε form MnO2 crystals. The specific surface area and pore volume of MnO2 respectively increased from 8.81 cm2·g-1 to 39.82 cm2·g-1 and from 0.08 cm3·g-1 to 0.26 cm3·g-1 with the concentration of precursor solution increased from 0.01 mol·L-1 to 0.10 mol·L-1. In addition, the first coulombic efficiency of lithium-ion battery was more than 22.56%, and the reversible capacity of the battery could still maintain 70 mAh·g-1 after 10 cycles.

中图分类号 TB34   DOI 10.11973/jxgccl201603011

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及其应用

基金项目 国家自然科学基金资助项目(21103119, 21277094, 21407111); 江苏省高校自然科学研究面上项目(11KJB430012); 教育部留学回国人员科研启动经费资助项目([2013]693); 江苏省环境功能材料重点实验室开放课题项目(SJHG1310); 江苏省高校研究生科研创新计划项目(CXZZ13_0855)

收稿日期 2015/2/1

修改稿日期 2015/12/13

网络出版日期

作者单位点击查看

备注王赛(1989-), 男, 江苏宿迁人, 硕士研究生。

引用该论文: WANG Sai,XU Song-song,WU Zheng-ying,YE Peng,CHEN Feng,LIU Cheng-bao,LI Ping,CHEN Zhi-gang. Preparation and Electrochemical Properties of Lamellar Porous MnO2 Synthesized by Using Camellia Petal as Biotemplates[J]. Materials for mechancial engineering, 2016, 40(3): 43~48
王赛,许松松,吴正颖,叶朋,陈丰,刘成宝,李萍,陈志刚. 以山茶花瓣为模板合成多孔片层结构MnO2及其电化学性能[J]. 机械工程材料, 2016, 40(3): 43~48


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DEBECKER D P, HUlEA V, MUTIN P H. Mesoporous mixed oxide catalysts via non-hydrolytic sol-gel: a review[J]. Applied Catalysis A: General, 2013, 451: 192-206.
 
【2】BIBBY A, MERCIER L. Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica[J]. Green Chemistry, 2003,5:15-19.
 
【3】POYRAZ A S, BISWAS S, GENUINO H C, et al. Bimodification of mesoporous silicon oxide by coupled "In situ oxidation at the interface and ion exchange" and its catalytic activity in the gas-phase toluene oxidation[J]. Chem Cat Chem,2012,5(4): 920-930.
 
【4】DE VOS D E, DAMS M, SELS B F, et al. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations[J]. Chemical Reviews, 2002, 102(10): 3615-3640.
 
【5】TAGUCHI A, SCHUTH F. Ordered mesoporous materials in catalysis[J]. Microporous Mesoporous Materials, 2005, 77(1): 1-45.
 
【6】POYRAZ A S, SONG W Q, KRIZ D, et al. Crystalline mesoporous K2-xMn8O16 and ε-MnO2 by mild transformations of amorphous mesoporous manganese oxides and their enhanced redox properties[J]. Applied Materials and Interfaces, 2014, 6(14): 10986-10991.
 
【7】HAN D D, JING X Y, XU P C, et al. Facile synthesis of hierarchical hollow ε-MnO2 spheresandtheir application in supercapacitor electrodes[J]. Journal of Solid State Chemistry, 2014, 218: 178-183.
 
【8】TITIRICI M M, ANTONIETTI M, THOMAS A, et al. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach[J]. Chemistry of Materials, 2006, 18(16): 3808-3812.
 
【9】MARK E D. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821.
 
【10】YU P, ZHANG X, WANG D L, et al. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors[J]. Crystal Growth and Design, 2009, 9(1): 528-533.
 
【11】YOUSEFI T, GOLIKAND A N, MASHHADIZADEH M H, et al. Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies[J]. Journal of Solid State Chemistry, 2012, 190:202-207.
 
【12】MA N, SARGENT E H, KELLEY S O. Biotemplated nanostructures: directed assembly of electronic and optical materials using nanoscale complementarity[J]. Journal of Materials Chemistry, 2008, 18(9): 954-964.
 
【13】QIAN J C, CHEN F, ZHAO X B, et al. China rose petal as biotemplate to produce two-dimensional ceria nanosheets[J]. Journal of Nanoparticle Research, 2011, 13:7149-7158.
 
【14】SHIM H W, JIN Y H, SEO S D, et al. Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures[J]. ACS Nano, 2010, 5(1): 443-449.
 
【15】LI X, FAN T, ZHOU H, et al. Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green-leaf biotemplates[J]. Advanced Functional Materials, 2009, 19(1): 45-56.
 
【16】KOSTOVSKI G, WHITE D, MITCHELL A, et al. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing[J]. Biosensors and Bioelectronics, 2009, 24(5): 1531-1535.
 
【17】ZHANG W, ZHANG D, FAN T, et al. Novel photoanode structure templated from butterfly wing scales[J]. Chemistry of Materials, 2008, 21(1): 33-40.
 
【18】GREIL P. Biomorphous ceramics from lignocellulosics[J]. Journal of the European Ceramic Society, 2001, 21(2): 105-118.
 
【19】LIU Y K, WANG H, ZHU Y C, et al. Pyrolysis synthesis of magnetic ε- and β-MnO2 nanostructures and the polymorph discrimination[J]. Solid State Communications, 2009, 49(37/38): 1514-1518.
 
【20】HU X F, HAN X P, HU Y X, et al. ε-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable LiO2 batteries[J]. Nanoscale, 2014, 6: 3522.
 
【21】杨建锋, 刘建华, 潘文硕, 等. 内热式回转炉处理电解MnO2技术的研究[J]. 电源技术, 2005, 29(8): 535-538.
 
【22】VCLAV , DANIELA K, FRANTIEK O, et al. Mesoporous manganese oxide for warfare agents degradation[J]. Microporous and Mesoporous Materials, 2012, 156: 224-232.
 
【23】WANG J G, YANG Y, HUANG Z H, et al. Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors[J]. Journal of Power Sources, 2012, 204: 236-243.
 
【24】KARIMI A, MAHDIZADEH F, SALARI D, et al. Bio-deoxygenation of water using glucose oxidase immobilized in mesoporous MnO2[J].Desalination,2011,275(1/3):148-153.
 
【25】ZHU J Y, HE J H. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors[J]. Applied Materials and Interfaces, 2012, 4 (3): 1770-1776.
 
【26】FENG X M, YAN Z Z, CHEN N G, et al. The synthesis of shape-controlled MnO2/graphene composites via a facile one-step hydrothermal methodand their application in supercapacitors[J]. Journal of Materials Chemistry A, 2013, 47(1): 12818-12825.
 
【27】陈丰, 曹煜, 刘成宝, 等. 以滤纸为模板制备多孔CeO2纤维及其催化性能[J]. 机械工程材料, 2014, 38(8): 33-38.
 
【28】徐如人, 庞文琴. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004:147-148.
 
相关信息
   标题 相关频次
 分级多孔炭的生物诱导合成及其吸附性能
 9
 以滤纸为模板制备多孔CeO2纤维及其催化性能
 9
 基于植物模板法制备高性能石墨烯/氧化锰复合材料及其电化学性能
 6
 膨胀石墨-活性炭负载CeO2/TiO2复合材料的制备及其处理苯酚的性能
 6
 一步浸渍化学活化法制备膨胀石墨/活性炭复合材料
 5
 以鱼鳞为模板合成仿生氧化铈及其性能
 5
 CeO2/ATP纳米复合材料的水热合成及其表征
 4
 CeO2-MnO2纳米氧化物/石墨烯复合电极材料的制备及其超级电容性能
 4
 负载纳米TiO2膨胀石墨/活性炭复合材料的制备及其性能
 4
 改性膨胀石墨基炭/炭复合材料对甲醛气体的吸附性能
 4
 光催化脱硝材料的研究进展
 4
 膨胀石墨对油田含油废水的动态吸附
 4
 膨胀石墨基炭/炭复合材料对苯酚的吸附动力学
 4
 水热法合成棒束状纳米CeO2粉体及其催化性能
 4
 SiO2-CuO复合纤维材料的抗菌性能
 3
 仿生CuO-CeO2复合材料低温选择性催化还原脱硝性能
 3
 固相反应烧结制备锂离子电池正极材料LiFeBO3及其电化学性能
 3
 以硅藻为模板合成TiO2微胶囊及其可见光催化性能
 3
 304不锈钢敏化程度的超声无损表征
 2
 940不锈钢在含石英砂3.5%氯化钠溶液中的腐蚀磨损
 2
 Al0.3CoCrFeNi纳米晶高熵合金在碱性溶液中的电化学性能
 2
 AlFeCoNiCrTiVx系高熵合金的组织结构及电化学性能
 2
 MoO2/C纳米纤维复合薄膜的电化学性能
 2
 Sb元素对模拟低含量氯盐环境中Mg-6Al合金耐蚀性的影响
 2
 X射线衍射法测定纳米晶纯铝的平均晶粒尺寸
 2
 奥氏体不锈钢应力腐蚀微裂纹的非线性表面波检测
 2
 爆炸复合Pt/Ti电极的电化学性能
 2
 不同晶型MnO2超级电容器电极材料的电化学特性
 2
 长玻璃纤维增强聚氨酯泡沫复合材料的制备及工艺优化
 2
 衬底材料和溅射方法对CNx薄膜膜基结合力的影响
 2