搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
17-4PH不锈钢的析氢行为
          
Hydrogen Evolution of 17-4PH Stainless Steels

摘    要
采用电化学测试的方法评价了两种强度的17-4PH不锈钢在海水中的阴极极化行为;采用充氢试验研究了两种强度的17-4PH不锈钢在-1.1 V(SCE,下同)电位下阴极极化15 d后的含氢量;采用慢应变速率试验研究了两种强度17-4PH不锈钢在充氢后的氢脆系数。结果表明:两种强度的17-4PH不锈钢在海水中的析氢转变电位均在-0.90 V左右;低强度不锈钢的氢质量分数约为2.55×10-4%,而高强度不锈钢的氢质量分数则高达6.84×10-4%;试样充氢后,高强度不锈钢的脆性明显增加,而低强度不锈钢的脆性增加不明显,高强度不锈钢的氢脆系数远超过25%,此时材料已存在氢脆危险,而低强度不锈钢的氢脆系数约为18%左右,尚处于氢脆安全区。
标    签 17-4PH不锈钢   析氢   电化学测试   慢应变速率试验   17-4PH stainless steel   hydrogen evolution   electrochemical test   slow strain rate test (SSRT)  
 
Abstract
The hydrogen evolution transforming potential and current density of hydrogen evolution at -1.10 V (vs. SCE, the same below) polarization potential of 17-4PH stainless steels with two distinguishing strength were studied using electrochemical test method. Hydrogen charging test was used to study the hydrogen contents of the alloys after 15 days of hydrogen charging at -1.1 V polarization potential. The slow strain rate tests were used to evaluate the hydrogen embrittlement susceptibility of 17-4PH alloys with or without hydrogen charging. The results show that the hydrogen evolution transformed potentials of both 17-4PH stainless steels in seawater were about -0.90 V. The low strength 17-4PH strainless steel had a hydrogen content of only 2.55×10-4mass%, while the high strength stainless steel had a hydrogen content as high as 6.84×10-4mass%. The strainless steel with high strength showed a significant increase in brittleness after hydrogen charging, while the change in low-strength stainless steel was much smaller. The high strength stainless steel had a hydrogen embrittlement coefficient more than 25%, which means the steel is among the risky range of hydrogen embrittlement; while the low strength stainless steel had a hydrogen embrittlement coefficient about 18%, which means the steel is in riskless range of hydrogen embrittlement.

中图分类号 TG172   DOI 10.11973/fsyfh-201604010

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目

收稿日期 2015/4/1

修改稿日期

网络出版日期

作者单位点击查看


备注张海兵(1983-),工程师,硕士,从事金属材料腐蚀与防护研究,

引用该论文: ZHANG Hai-bing,MA Li,YAN Yong-gui,CHENG Wen-hua,YUAN Ya-min. Hydrogen Evolution of 17-4PH Stainless Steels[J]. Corrosion & Protection, 2016, 37(4): 317


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】TSAY L W, YANG T Y, YOUNG M C. Embrittlement of laser surfaceannealed 17-4PH stainless steel[J]. Materials Science and Engineering A, 2001, 311(1/2): 64-73.
 
【2】CHIANG W C, PU C C, YU B L, et al. Hydrogen susceptibility of 17-4PH stainless steel[J]. Materials Letters, 2003, 57(16/17): 2485-2488.
 
【3】任学冲,金莹,王莎莎,等. 贝氏体车轮钢的氢脆敏感性[J]. 腐蚀与防护, 2011, 32(11): 863-867.
 
【4】ADAMS T M, MICKALONIS J. Hydrogen permeability of multiphase V-Ti-Ni metallic membranes[J]. Materials Letters, 2007, 61(3): 817-820.
 
【5】TAKANO T, OSHIKAWA K, MATSUDA T, et al. Hydrogen permeation of eutectic Nb-Zr-Ni alloys membranes containing primary phases[J]. Journal of Alloys and Compound, 2004, 45(12): 458-461.
 
【6】HIROKI I. Hydrogen embrittlement of high strength martensitic stainless steels[J]. Sanyo Technical Report, 2002, 9(1): 50-58.
 
【7】崔教林, HARDIE D. 三种钢的氢脆敏感性探讨[J]. 腐蚀与防护, 1996, 17(3):114-117.
 
【8】CAPELLE J, GILGERT J, DMYTRAKH I, et al. Sensitivity of pipelines with steel API X52 to hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2008, 33(24): 7630-7641.
 
【9】FUKUYAMA S, IMADE M, YOKOGAWA K. Hydrogen embrittlement of metals for high-pressure hydrogen storage[C]// Proceedings of the 8th Asian Hydrogen Energy Conference. Beijing: [s.n.], 2005.
 
【10】VKL J, WIPF H. Diffusion of hydrogen in metals[J]. Hyperfine Interactions, 1981, 8(4/6): 631-637.
 
【11】李会录,余竹焕,李颖,等. 高强钢氢脆敏感性和氢致附加应力的相关性[J]. 腐蚀与防护, 2009, 30(10): 678-683.
 
【12】唐晓. 热浸镀钢材在海水中的氢渗透行为及其对材料力学性能的影响[D]. 青岛: 中国科学院海洋研究所, 2006.
 
【13】张林. 海水中极化电位对X70钢氢脆敏感性的影响[J]. 材料科学与工艺, 2011, 5(19): 96-101.
 
【14】程远, 俞宏英, 王莹, 等. 外加电位对X80钢在南雄土壤模拟溶液中应力腐蚀行为的影响[J]. 腐蚀与防护,2013, 34(1): 13-17.
 
【15】UYAMA H, MINE Y, MURAKAMI Y. Effects of test frequency on fatigue behaviour in tempered martensitic steel with hydrogen charge[J]. Journal of the Society of Materials Science, 2006, 55(8): 726-731.
 
【16】郑传波,益帼,高延敏. 高强铝合金应力腐蚀及氢渗透行为研究进展[J]. 腐蚀与防护, 2013, 34(7): 600-604.
 
【17】OLDEN V, ALVARO A, AKSELSEN O M. Hydrgen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint-experiments and FE simulations[J]. International Journal of Hydrogen Energy, 2012, 37(15): 11474-11486.
 
【18】OLDEN V, THAULOW C, JOHNSEN R. Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Materials and Design, 2008, 29(10): 1934-1948.
 
【19】杨兆艳, 闫永贵, 马力, 等. 阴极极化对907钢氢脆敏感性的影响[J]. 腐蚀与防护, 2009, 32(10): 701-703.
 
【20】DEVNATHAN M, STACHURSKI Z. A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J]. Journal of the Electrochemical Society, 1963, 110(8): 886-890.
 
【21】谭文志, 杜元龙, 傅超, 等. 阴极保护导致ZC-120钢在海水中环境氢脆[J]. 材料保护, 1988, 21(3): 10-13.
 
【22】褚武杨, 乔利杰, 陈奇志, 等. 断裂与环境断裂[M]. 北京:科学出版社, 2000.
 
相关信息
   标题 相关频次
 高纯锌参比电极电位稳定性研究
 4
 模拟深海环境中高强钢的阴极保护准则
 4
 溶解氧浓度对船体钢在海水中腐蚀行为的影响
 4
 温度对铂钽复合阳极电化学性能的影响
 4
 阴极保护电位对E460钢氢脆敏感性的影响
 4
 阴极极化对907钢氢脆敏感性的影响
 4
 17-4PH不锈钢磁粉检测中出现的问题分析
 2
 17-4PH不锈钢高锁螺母裂纹产生的原因
 2
 17-4PH不锈钢热老化的磁多参数无损评估
 2
 2205双相不锈钢在卤水环境中的腐蚀行为
 2
 25Cr-20Ni-ODS钢在超临界水中的腐蚀行为
 2
 NaClO2溶液中S2205不锈钢在点蚀初期的行为
 2
 Q235钢和纯铜在不同pH红壤模拟溶液中的腐蚀电化学特征
 2
 Q235碳钢在宜宾不同大气环境中的腐蚀行为
 2
 X80管线钢在含氢煤制气环境中的氢脆敏感性
 2
 不同状态2A12铝合金与17-4PH不锈钢间的摩擦磨损性能
 2
 超级13Cr不锈钢的临界点蚀温度
 2
 车辆阴极保护效果测试与数值模拟
 2
 醋酸钾型除冰液薄液膜厚度对飞机用4130钢腐蚀行为的影响
 2
 氮化处理对904L不锈钢组织和腐蚀行为的影响
 2
 电力设备架构部件用Q235B钢和镀锌钢在工业高湿热环境中的腐蚀行为
 2
 钝化处理对Al-B4C复合材料腐蚀行为的影响
 2
 二氧化铅电极的制备工艺
 2
 高硅铝合金阳极氧化工艺
 2
 海水pH对两种船体钢腐蚀行为的影响
 2
 海水干湿交替环境对铝合金牺牲阳极性能的影响
 2
 合金元素对Al-Zn-In系牺牲阳极溶解行为的影响
 2
 减压塔顶板式空冷器腐蚀失效分析及建议
 2
 可膨胀管变形前后的耐CO2腐蚀性能
 2
 硫酸盐还原菌作用下Cl-浓度对20号钢在高矿化度油田卤水中腐蚀行为的影响
 2