搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
分级多孔炭的生物诱导合成及其吸附性能
          
Preparation of Hierarchical Porous Carbon by Biological Induced Method and Its Adsorption Property

摘    要
以凌霄花瓣为生物模板、蔗糖为炭源、氯化钠为造孔剂、氢氧化钾为活化剂, 采用生物诱导法合成了分级多孔炭, 确定了最佳工艺参数并研究了各工艺参数对该多孔炭显微结构及吸附性能的影响。结果表明: 最佳合成工艺参数为蔗糖、NaCl、KOH溶液质量分数分别为1.0%, 2.0%, 1.0%, 体积比为1∶1∶1, 活化温度为650 ℃, 活化时间为60 min; 制备的多孔炭基本保留了凌霄花瓣的微观形貌, 孔径分布较窄, 比表面积高达357 m2·g-1; 该多孔炭具有极强的吸附能力, 在120 mg·L-1的亚甲基蓝溶液中, 在120 min时达到吸附饱和, 吸附量可达60 mg·g-1。
标    签 生物模板   分级多孔炭   显微结构   吸附性能   bio-template   hierarchical porous carbon   microstructure   adsorption property  
 
Abstract
With campsis grandiflora as bio-template, sucrose as carbon source, NaCl as pore-forming agent and KOH as activator, hierarchical porous carbon was prepared by biological induced method. The optimum process parameters were determined and the effects of different process parameters on the microstructures and adsorption properties of the porous carbon were investigated. The results show that the optimum synthesis process parameters were obtained as follows: 1.0wt% sucrose solution, 2.0wt% NaCl solution and 1.0wt% KOH solution with volume ratio of 1∶1∶1; activation temperature of 650 ℃; activation time of 60 min. The obtained porous carbon retained the microstructure of campsis grandiflora and had a relatively narrow pore size distribution and a relatively high specific surface area of 357 m2·g-1.The adsorption property of the porous carbon was excellent. In the methylene blue solution of 120 mg·L-1, the porous carbon reached the adsorption saturation at 120 min with the adsorption capacity of 60 mg·g-1.

中图分类号 O647.3   DOI 10.11973/jxgccl201607004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(21103119, 21277094, 21407111); 江苏省高校自然科学研究面上项目(11KJB430012); 教育部留学回国人员科研启动经费资助项目(2013693); 江苏省高校研究生科研创新计划项目(CXZZ13_0855)

收稿日期 2015/3/5

修改稿日期 2016/3/31

网络出版日期

作者单位点击查看

备注李萍(1989-), 女, 江苏镇江人, 硕士研究生。

引用该论文: LI Ping,CHEN Zhi-gang,LIU Cheng-bao,QIAN Jun-chao,CHEN Feng. Preparation of Hierarchical Porous Carbon by Biological Induced Method and Its Adsorption Property[J]. Materials for mechancial engineering, 2016, 40(7): 18~23
李萍,陈志刚,刘成宝,钱君超,陈丰. 分级多孔炭的生物诱导合成及其吸附性能[J]. 机械工程材料, 2016, 40(7): 18~23


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】WANG Y, LIU Z M, HUA B X, et al.Carbon microspheres with supported siliver nanoparticles from pollen grains[J].Langmuir, 2005, 2l(23): 10846-10849.
 
【2】JIA Y F, THOMAS K M.Adsorption of cadmium ions on oxygen surface sites in activated carbon[J].Langmuir, 2000, 16(3): 1114-1122.
 
【3】XU Y J, WEINBERG G, LIU X, et al.Nanoarchitecturing of activated carbon: facile strategy for chemical functionalization of the surface of activated carbon[J].Advanced Functional Materials, 2008, 18(22): 3613-3619.
 
【4】IQBAL M J, ASHIQ M N.Adsorption of dyes from aqueous solutions on activated charcoal[J].Journal of Hazardous Materials, 2007, 139(1): 57-66.
 
【5】SOTIROPOULOU S, SIERRA S Y, MARK S S, et al.Biotemplated nanostructured materials[J].Chemistry of Materials, 2008, 20(3): 821-834.
 
【6】HASEGAWA G, KANAMORI K, NAKANISHI K, et al.Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process[J].Chemical Communications, 2010, 46: 8037-8039.
 
【7】MULLER B R.Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon[J].Carbon, 2010, 48(12): 3607-3615.
 
【8】KANTE K, NIETO-DELGADO C, RANGEL-MENDEZ J R, et al.Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process[J].Journal of Hazardous Materials, 2012, 201: 141-147.
 
【9】SILVESTRE-ALBERO A, GONCALVES M, ITOH T, et al.Well-defined mesoporosity on lignocellulosic-derived activated carbons[J].Carbon, 2012, 50(1): 66-72.
 
【10】INAGAKI M, KAWAHARA A, KONNO H.Recovery of heavy oil from contaminated sand by using exfoliated graphite[J].Desalination, 2004, 170(1): 77-82.
 
【11】TRYBA B, MORAWSKI A W, INAGAKI M. Praparation of exfoliated graphite by microwave irradiation[J]. Carbon, 2005, 43(11): 2417-2419.
 
【12】ZHENG Y P, WANG H N, KANG F Y, et al.Sorption capacity of exfoliated graphite for oil-sorption in and among worm-like particles[J]. Carbon, 2004, 42(12): 2603-2607.
 
【13】YUE X Q, ZHANG R J, ZHANG F C, et al.Decomposition of crude oil absorbed into expanded graphite/TiO2/NiO composites[J]. Desalination, 2010, 252(1): 163-166.
 
【14】沈曾民, 张文辉, 张学军. 活性炭材料的制备与应用[M]. 北京: 化学工业出版社, 2006: 2-14.
 
【15】XIANG X X, LIU E H, HUANG Z Z, et al.Microporous carbon derived from polyaniline base as anode material for lithium ion secondary battery[J].Materials Research Bulletin, 2011, 46(8): 1266-1271.
 
【16】FOO K Y, HAMEED B H.Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating[J].Bioresource Technology, 2012, 111: 425-432.
 
【17】TENG M M, QIAO J L, LI F T, et al.Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules[J].Carbon, 2012, 50(8): 2877-2886.
 
【18】李强, 汪印, 余剑, 等.物理活化白酒糟制备多孔炭材料[J]. 新型炭材料, 2012, 27(6): 440-450.
 
【19】王红艳, 张胜义, 张莉, 等.葡苷聚糖模板法制备纳米硒[J].安徽大学学报, 2005, 29(1): 81-85.
 
【20】吴庆生, 丁亚平, 李强.活体生物膜双模板同步诱导合成硫化镉半导体纳米管和纳米球[J].科学通报, 2006, 51(2): 129-132.
 
【21】王作山.模板介入法制备纳米氧化铝及其应用研究[D].太原: 华北工学院, 2004.
 
【22】DAVIS S A, BURKETT S L, MENDELSON N H, et al. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases[J]. Nature, 1997, 385: 420-423.
 
【23】YANG D, QI L, MA J.Eggshell membrane templating of hierarchically ordered macroporous networks composed of TiO2 tubes[J].Advanced Materials, 2002, 14(21): 1543-1546.
 
【24】张笑, 罗明, 高积强, 等.以木材为模板制备TiN/C多孔陶瓷[J].宁夏工程技术, 2006, 5(2): 130-133.
 
【25】DONG A G, WANG Y J, TANG Y, et al.Zeolitic tissue through wood cell templating[J].Advanced Materials, 2002, 14(12): 926-929.
 
【26】KIM S W, HAN T H, KIM J, et al.Fabrication and electrochemical characterization of TiO2 three-dimensional nano-network based on peptide assembly[J].ACS Nano, 2009, 3(5): 1085-1090.
 
【27】LIU C B, CHEN Z G, CHENG X L, et al.Preparation and structure analysis of expanded graphite-based composites made by phosphoric acid activation[J].Journal of Porous Materials, 2010, 17(4): 425-428.
 
【28】HAQUE E, JUN J W, JHUNG S H.Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate(MOF-235)[J].Journal of Hazardous Materials, 2011, 185(1): 507-511.
 
【29】刘成宝, 陈志刚, 陈丰, 等.微纳米多孔碳质材料的表面修饰及苯酚吸附性能[J].硅酸盐学报, 2012, 40(5): 776-782.
 
【30】ZAMPIERI A, MABANDE G T P, SELVAM T, et al.Biotemplating of Luffa cylindrical sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors[J].Materials Science and Engineering C, 2006, 26(1): 130-135.
 
【31】苏伟, 周理.高比表面积活性炭制备技术的研究发展[J].化学工程, 2005, 33(2): 44-47.
 
【32】MCKEE D W.The Catalyzed Gasification Reaction of Carbon[M].New York: Marcel Dekker, 1981.
 
【33】岳中仁, 陆耘.KOH活化制备活性碳纤维的研究[J].功能材料, 1996, 27(4): 372-376.
 
相关信息
   标题 相关频次
 以山茶花瓣为模板合成多孔片层结构MnO2及其电化学性能
 9
 基于植物模板法制备高性能石墨烯/氧化锰复合材料及其电化学性能
 8
 以滤纸为模板制备多孔CeO2纤维及其催化性能
 7
 CeO2-MnO2纳米氧化物/石墨烯复合电极材料的制备及其超级电容性能
 6
 膨胀石墨-活性炭负载CeO2/TiO2复合材料的制备及其处理苯酚的性能
 6
 水热法合成棒束状纳米CeO2粉体及其催化性能
 6
 仿生CuO-CeO2复合材料低温选择性催化还原脱硝性能
 5
 光催化脱硝材料的研究进展
 5
 以硅藻为模板合成TiO2微胶囊及其可见光催化性能
 5
 以鱼鳞为模板合成仿生氧化铈及其性能
 5
 CeO2/ATP纳米复合材料的水热合成及其表征
 4
 SiO2-CuO复合纤维材料的抗菌性能
 4
 负载纳米TiO2膨胀石墨/活性炭复合材料的制备及其性能
 4
 改性膨胀石墨基炭/炭复合材料对甲醛气体的吸附性能
 4
 膨胀石墨对油田含油废水的动态吸附
 4
 膨胀石墨基炭/炭复合材料对苯酚的吸附动力学
 4
 一步浸渍化学活化法制备膨胀石墨/活性炭复合材料
 4
 热处理温度对高钒高速钢显微组织和硬度的影响
 3
 神经网络在20钢时效组织状态无损识别中的应用
 3
 原位透射电子显微术研究进展
 3
 304不锈钢敏化程度的超声无损表征
 2
 AlN/w-BN纳米多层膜的制备及其显微结构
 2
 CaCO3加入量对刚玉浇注料烧结后性能和显微结构的影响
 2
 La2O3对等离子喷涂Al2O3-13%TiO2涂层显微结构与性能的影响
 2
 MWNTs/Fe3Al金属间化合物基复合材料的导电性能
 2
 Sb元素对模拟低含量氯盐环境中Mg-6Al合金耐蚀性的影响
 2
 VC含量对Ti(C,N)基金属陶瓷力学性能的影响
 2
 X射线衍射法测定纳米晶纯铝的平均晶粒尺寸
 2
 Zr(OH)4添加量对Al2O3-MgO浇注料基质显微结构和阻力系数的影响
 2
 α-Si3N4与γ-Si3N4超高压烧结体的性能对比
 2