搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
耐硫化氢腐蚀X80管线钢轧制工艺的模拟优化
          
Optimizing Rolling Process of Hydrogen Sulfide Corrosion Resistant X80 Pipeline Steel by Thermal Simulation

摘    要
采用热膨胀仪研究了耐硫化氢腐蚀X80管线钢在连续冷却过程中的相变行为, 绘制了其连续冷却转变曲线(CCT曲线); 并且利用热模拟试验机对其轧制工艺进行模拟, 研究了变形温度、冷却速率和卷取温度对试验钢组织和硬度的影响, 得到了较优化的轧制工艺; 最后测试了在优化轧制工艺参数下轧制试验钢的力学性能和抗氢致开裂性能。结果表明: 试验钢的相变温度主要发生在450~780 ℃之间; 随着冷却速率增加, 相变开始温度下降, 并且当冷速为1.76~8.8 ℃·s-1时可以得到以针状铁素体为主的组织; 最佳的轧制工艺参数为变形温度(830±15) ℃、冷却速率15 ℃·s-1、卷取温度为(400±15) ℃; 在此工艺参数下轧制得到的试验钢具有优良的抗氢致开裂性能, 并可以满足API5L标准对X80管线钢强度级别的要求。
标    签 X80管线钢   耐硫化氢腐蚀   CCT曲线   热模拟   轧制工艺   X80 pipeline steel   hydrogen sulfide corrosion resistance   continuous cooling transformation(CCT) curve   thermal simulation   rolling process  
 
Abstract
Thermal expansion instrument was used to study the phase transition behaviors of hydrogen sulfide corrosion resistant X80 pipeline steel during continuous cooling and continuous cooling transformation (CCT) curves were drawn. Moreover, simulation test for its rolling process was also carried out using thermal simulation test machine. And the effects of deformation temperature, cooling rate and coiling temperature on microstructure and hardness of tested steel were analyzed, and the optimized rolling process parameters were obtained. At last, for the tested steel rolled at optimized rolling process parameters, its mechanical properties and hydrogen induced cracking (HIC) resistance were tested. The results demonstrat that phase change temperature of the tested steel mainly occurred between 450 ℃ and 780 ℃. With the increase of cooling rate, the phase transformation starting temperature was overall declined. In addition, the microstructure was mainly acicular ferrite when the cooling rate was between 1.76 ℃·s-1 and 8.8 ℃·s-1. The optimum rolling process parameters was determined as phase transition temperature, cooling rate and coiling temperature of (830±15) ℃, 15 ℃·s-1 and (400±15) ℃, respectively. The tested steel rolled at the above rolling process parameters had good HIC resistance, and it can meet strength demands of API5L on X80 pipeline steel.

中图分类号 TG142.1   DOI 10.11973/jxgccl201607022

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目

收稿日期 2015/4/24

修改稿日期 2016/3/28

网络出版日期

作者单位点击查看

备注陈健(1987-), 男, 辽宁铁岭人, 硕士研究生。

引用该论文: CHEN Jian,WANG Bing,LIU Qing-you. Optimizing Rolling Process of Hydrogen Sulfide Corrosion Resistant X80 Pipeline Steel by Thermal Simulation[J]. Materials for mechancial engineering, 2016, 40(7): 102~108
陈健,汪兵,刘清友. 耐硫化氢腐蚀X80管线钢轧制工艺的模拟优化[J]. 机械工程材料, 2016, 40(7): 102~108


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】张治国, 吴明, 程浩力, 等. X80 级管线钢的发展及腐蚀实验研究概况[J]. 当代化工, 2011, 40(2): 206-208.
 
【2】张斌, 钱成文, 王玉梅, 等. 国内外高钢级管线钢的发展及应用[J]. 石油工程建设, 2012, 38(1): 1-4.
 
【3】范跃华, 樊新民, 魏伟, 等. 高强度管线钢连续冷却转变研究[J]. 材料热处理学报, 2008, 29(3): 62-65.
 
【4】彭海红, 陈晔, 李国宝, 等.X60管线钢再结晶和过冷奥氏体连续冷却相变行为的研究[J].钢铁钒钛, 2006, 27 (4): 34-37.
 
【5】左碧强, 王岩, 米振莉, 等.管线钢X80的CCT曲线研究[J].材料热处理技术, 2010, 39(4): 12-14.
 
【6】彭海红, 栾玉武, 黄伟, 等.X65管线钢连续冷却相变行为的研究[J].宽厚板, 2007, 13 (1): 36-38.
 
【7】DONG C F, LI X G, LIU Z Y, et al. Hydrogen-induced cracking and healing behaviour of X70 steel [J]. Journal of Alloys and Compounds, 2009, 484: 966-972.
 
【8】ZHAO Ming-chun, SHAN Yi-ying, XIAO Fu-ren, et al.Investigation on the H2S resistant behaviors of acicular ferrite and ultrafine ferrite[J]. Materials Letters, 2002, 57: 141-145.
 
【9】KOH S U, JUNG H G, KIM K Y. The effect of microstructure on hydrogen induced cracking resistance of high strength low alloy [C]//16th International Corrosion Congress. Beijing: [s.n.]2005: 66.
 
【10】王畅畅. 经济型X80管线钢组织与性能关系研究[D].昆明: 昆明理工大学, 2014: 5.
 
【11】GREGG J M, BHADESHI H K D H. Solid-state nucleation of acicular ferrite on minerals added to molten steel[J].Actamaterialia, 1997, 45: 739-748.
 
【12】KIM Y M, LEE H, KIM N J. Trans-formation behavior and microstructural characteristics of acicular ferrite in linepipe steels[J].Materials Science and Engineering A, 2008, 478: 361-370.
 
【13】TANG Zheng-hua, STUMPF W. The role of molyb-denum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels[J]. Materials Characterization, 2008, 59: 717-728.
 
【14】肖福仁.针状铁素体管线钢的组织控制与细化工艺研究[D].秦皇岛: 燕山大学, 2003: 11-15.
 
【15】顾宝兰, 徐学东, 周莉. 管线用钢显微组织对氢致裂纹影响的研究[J]. 理化检验-物理分册, 2006, 42(1): 8-11.
 
【16】BEIDOKHTI B, DOLATI A, KOUKABI A H. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J]. Materials Science and Engineering A, 2009, 507(1/2): 167-173.
 
【17】王勇围.低碳Mn系空冷贝氏体钢的强韧性优化研究[D].北京: 清华大学, 2008: 37.
 
【18】胡亮. 耐H2S腐蚀管线钢组织缺陷研究[D] .昆明: 昆明理工大学, 2014: 5.
 
相关信息
   标题 相关频次
 电化学充氢条件下夹杂物对管线钢氢致开裂敏感性的影响
 6
 显微组织对超低碳X80管线钢氢致开裂行为的影响
 6
 不同铬含量耐候钢在高湿热模拟环境中的耐腐蚀性能
 5
 X80管线钢焊接工艺热模拟
 4
 拉曼光谱法分析低碳钢模拟大气腐蚀锈层
 4
 耐候钢的腐蚀过程及锈层形成机理
 4
 轧制工艺对经济型X80管线钢组织和显微硬度的影响
 4
 高湿热海洋大气环境下温度和湿度对Q345钢耐蚀性能的影响
 3
 含微量钛低合金结构钢的热轧工艺优化
 3
 焊后冷却时间对X80级抗大变形管线钢焊接粗晶热影响区组织的影响
 3
 0.8设计系数用X80管线钢焊接接头的失效评估曲线
 2
 2.25Cr1Mo0.25V钢的再热开裂应变判据
 2
 49MnVS3非调质钢的两种轧制力模型对比
 2
 B+M/A复相组织X80大变形管线钢的预应变脆化
 2
 Cl-对X80管线钢在HCO-3溶液中的电化学行为影响
 2
 CO2分压对X80管线钢腐蚀性能的影响
 2
 E36高强度球扁钢的静态再结晶
 2
 IrOx/Ti电极测定低温溶液的pH
 2
 QLT工艺热处理后X80管线钢的显微组织和力学性能
 2
 SO42-对X80管线钢在酸性红壤模拟溶液中腐蚀行为的影响
 2
 SO2-4对X80管线钢在含Cl-的NaHCO3溶液中点蚀行为影响
 2
 U75V钢的连续冷却相变行为
 2
 X100管线钢焊接热影响区不同区域的显微组织与冲击韧性
 2
 X80M管线钢热轧板卷取温度的优化
 2
 X80钢在新疆不同土壤环境中的氢脆行为
 2
 X80管线钢不同电化学充氢状态下的断裂特性
 2
 X80管线钢的氢脆性能
 2
 X80管线钢第二相粒子溶解及奥氏体晶粒长大行为
 2
 X80管线钢电磁超声残余应力检测精度的影响因素
 2
 X80管线钢焊接粗晶区晶粒长大的动力学模型
 2