搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
石墨烯增强AZ91镁基复合材料的力学性能
          
Mechanical Properties of Graphene Reinforced AZ91 Mg Alloy Based Composite

摘    要
分别以质量分数为0.1%的氧化石墨烯和石墨烯纳米片为增强相制备了AZ91镁基复合粉和复合材料, 分析了氧化石墨烯与AZ91镁合金的界面反应机理; 测试了复合材料的力学性能并观察了拉伸断口形貌。结果表明: 以氧化石墨烯为增强相复合材料的屈服强度、伸长率和显微硬度分别为224.85 MPa, 8.15%和70.14 HV, 与基体镁合金的相比分别提高了39.7%, 35.4%和31.8%, 高于以石墨烯纳米片为增强相复合材料的; 氧化石墨烯因带有含氧官能团极易与镁合金粉混合均匀, 且两者反应生成的MgO有利于提高石墨烯与镁合金基体的界面结合强度, 从而提高复合材料的力学性能。
标    签 AZ91镁合金   氧化石墨烯   复合材料   力学性能   AZ91 Mg alloy   graphene oxide   composite   mechanical property  
 
Abstract
The AZ91 Mg alloy based composite powder and materials were prepared with graphene oxide and graphene nanosheet as strengthening phase respectively and the interface reaction mechanism of graphene oxide with AZ91 Mg alloy was analyzed. The mechanical properties of the composites were tested and the tensile fracture surfaces were observed. The results show that the yield strength, elongation and microhardness of the composite with graphene oxide as strengthening phase reached 224.85 MPa, 8.15% and 70.14 HV, which were improved by 39.7%, 35.4% and 31.8% respectively comparing to those of AZ91 Mg alloy and also much higher than those of the composite with graphene nanosheet as strengthening phase. The graphene oxide was easy to disperse uniformly with the AZ91 Mg alloy powder due to its oxygen groups; the interface bonding between graphene and Mg alloy matrix can be strengthened by MgO produced by the reaction between the Mg alloy and the oxygen groups, resulting in the improvement of mechanical properties of the composite.

中图分类号 TG146.2 TB333   DOI 10.11973/jxgccl201608011

 
  中国光学期刊网论文下载说明


所属栏目

基金项目 江西省教育厅科技项目(GJJ151309)

收稿日期 2015/7/15

修改稿日期 2016/6/28

网络出版日期

作者单位点击查看

备注袁秋红(1981-), 男, 江西吉安人, 博士研究生。

引用该论文: YUAN Qiu-hong,ZENG Xiao-shu,WU Jun-bin. Mechanical Properties of Graphene Reinforced AZ91 Mg Alloy Based Composite[J]. Materials for mechancial engineering, 2016, 40(8): 43~48
袁秋红,曾效舒,吴俊斌. 石墨烯增强AZ91镁基复合材料的力学性能[J]. 机械工程材料, 2016, 40(8): 43~48


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
 
【2】BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9): 351-355.
 
【3】BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
 
【4】NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
 
【5】WANG J, LI Z, FAN G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materialia, 2012, 66(8): 594-597.
 
【6】JIANG L, LI Z, FAN G, et al. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution[J]. Carbon, 2012, 50(5): 1993-1998.
 
【7】燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014(4): 1-6.
 
【8】RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Progress in Natural Science: Materials International, 2014, 24(2): 101-108.
 
【9】王筱峻, 杨锐, 吴昊, 等. 碳纳米管增强铝基复合材料研究进展[J]. 兵器材料科学与工程, 2013, 36(6): 127-134.
 
【10】RASHAD M, PAN F, ASIF M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4250-4255.
 
【11】RASHAD M, PAN F, TANG A, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. Journal of Alloys and Compounds, 2014, 603: 111-118.
 
【12】DAI B, FU L, LIAO L, et al. High-quality single-layer graphene via reparative reduction of graphene oxide[J]. Nano Research, 2011, 4(5): 434-439.
 
【13】付猛, 岳艳娟, 祝雅娟, 等. 水热法制备石墨烯及其表征[J]. 机械工程材料, 2013, 37(6): 84-88.
 
【14】韩朋, 井晓静, 沈湘黔, 等. 氧化石墨烯、短切碳纤维改性聚偏氟乙烯复合膜的摩擦磨损及介电性能[J]. 机械工程材料, 2013, 37(2): 53-56.
 
【15】SANANTONIO T, HORT N, MATHAUDHU S N, et al. Magnesium technology 2013[M]. [S.l.]: John Wiley & Sons, Inc, 2013: 345-353.
 
【16】LEE K E, OH J J, YUN T, et al. Liquid crystallinity driven highly aligned large graphene oxide composites[J]. Journal of Solid State Chemistry, 2015, 224: 115-119.
 
【17】沈明, 张天友, 张东. 氧化石墨烯剥离方法的研究进展[J]. 炭素, 2009(3): 13-18.
 
【18】孙鹏展. 石墨烯与氧化钛复合薄膜的制备及其性能研究[D]. 北京: 清华大学, 2012.
 
【19】LIAO K, MITTAL A, BOSE S, et al. Aqueous only route toward graphene from graphite oxide[J]. ACS Nano, 2011, 5(2): 1253-1258.
 
【20】ZHANG Y, PAN C. TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light[J]. Journal of Materials Science, 2011, 46(8): 2622-2626.
 
【21】任小孟, 王源升, 何特. 石墨烯热还原程度对其电化学性能的影响[J]. 电子元件与材料, 2013, 32(1): 5-9.
 
【22】PAULING L. The nature of the chemical bond. IV. the energy of single bonds and the relative electronegativity of atoms[J]. Journal of the American Chemical Society, 1932, 54(9): 3570-3582.
 
【23】XIE S, LI X, SUN Y Y, et al. Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals[J]. Carbon, 2013, 52: 122-127.
 
【24】李陇岗, 杨建元, 钟辉, 等. Mg(OH)2热分解动力学机理研究[J]. 盐湖研究, 2006, 14(1): 39-44.
 
【25】GENNARI F C, URRETAVIZACYA G. Mechanical alloying of Mg-Ge based mixturas under hydrogen and argon atmospheres[J]. Latin American applied research, 2002, 32(4): 275-280.
 
【26】GANESH V V, CHAWLA N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation[J]. Materials Science and Engineering A, 2005, 391(1/2): 342-353.
 
【27】ZHANG Z, CHEN D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength[J]. Scripta Materialia, 2006, 54(7): 1321-1326.
 
【28】BAKSHI S R, AGARWAL A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49(2): 533-544.
 
【29】徐强, 曾效舒, 徐耀勇, 等. 包覆镍CNTs/AM60复合材料铸态显微组织与力学性能[J]. 机械工程材料,2009, 33(10): 53-56.
 
【30】KONDOH K, FUKUDA H, UMEDA J, et al. Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J]. Materials Science and Engineering A,2010, 527(16/17): 4103-4108.
 
【31】王雪静, 陈得军, 周建国. 碳纳米管/氧化镁纳米复合材料的制备和表征[J]. 化工新型材料,2009, 37(2): 35-36.
 
【32】GOH C S, GUPTA M, WEI J, et al. Characterization of high performance Mg/MgO nanocomposites[J]. Journal of Composite Materials, 2007, 41(19): 2325-2335.
 
【33】FAN Z, WANG Y, XIA M, et al. Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing[J]. Acta Materialia, 2009, 57(16): 4891-4901.
 
相关信息
   标题 相关频次
 包覆镍CNTs/AM60复合材料铸态显微组织与力学性能
 8
 包覆镍的碳纳米管增强AZ91镁基复合材料的显微组织与力学性能
 7
 CNTs/AZ91复合材料的摩擦磨损性能
 6
 碳纳米管/ZM5复合材料的高温拉伸性能与显微组织
 6
 Ca-α/β-Sialon结合刚玉复合材料的力学性能
 4
 MGF/PLA复合材料的制备及性能
 4
 PP-g-MAH改性SGF+POE/FPP复合材料的制备及性能
 4
 芳纶纤维增强尼龙6复合材料的制备与性能
 4
 高速剪切对碳纳米管/环氧树脂复合材料导电性能的影响
 4
 老化和冲击对GF/EVE复合材料微观结构和力学性能的影响
 4
 纳米CaCO3添加量对其改性聚丙烯复合材料发泡效果及力学性能的影响
 4
 偶联剂表面处理对纳米SiO2/氰酸酯树脂复合材料力学性能的影响
 4
 碳纳米管/酚醛树脂基复合材料的研究进展
 4
 氧化石墨烯/改性碳纳米管复合膜的制备及其分离水中Pb2+的效果
 4
 苎麻增强环氧树脂复合材料的力学性能
 4
 风力机叶片用复合材料的拉伸及冲蚀磨损性能
 3
 聚氨酯基体配比对芳纶增强聚氨酯复合材料力学性能的影响
 3
 热处理对含微量镧AZ91镁合金组织和性能的影响
 3
 熔渗法制备高强Mg(AZ91D)/NiTi阻尼复合材料及其压缩和阻尼性能
 3
 铈、锶和钡元素复合添加对AZ91镁合金显微组织和力学性能的影响
 3
 数字图像相关法在复合材料研究中的应用进展
 3
 铸锻复合成形后AZ91镁合金的组织和力学性能
 3
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1 000 MW核电汽轮机空心螺栓断裂原因分析
 2
 1.25Cr0.5MoSi钢的焊接工艺评定
 2
 1060工业纯铝累积叠轧后的力学性能
 2
 1060铝在累积轧制中组织和性能的演变
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12Cr13钢预热处理工艺参数优化
 2