搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
不同晶粒尺寸和晶向分布多晶硅片弯曲应力的有限元模拟
          
Finite Element Modelling for Bending Stress of Polycrystalline Silicon Wafer with Different Grain Sizes and Crystal Orientation Distributions

摘    要
采用光致发光晶向识别技术分辨多晶硅片晶向的分布情况,通过纳米压痕试验测试多晶硅片在不同晶向上的弹性模量;然后利用有限元方法建立包含晶粒尺寸和晶向分布信息的多晶硅片有限元模型,将纳米压痕试验测得的不同晶向的弹性模量带入此模型,模拟得到了不同晶粒尺寸和晶向分布下多晶硅片的弯曲应力,最后通过三点弯曲试验对模拟结果进行了验证。结果表明:多晶硅片在不同晶向上的弹性模量和硬度不同;晶向分布会影响多晶硅片的最大弯曲应力和最大挠度的位置,晶粒形状会影响多晶硅片的最大弯曲应力;减小晶粒尺寸可以降低多晶硅片的最大弯曲应力;三点弯曲试验验证了所建模型的正确性。
标    签 多晶硅   晶粒尺寸   晶向分布   弯曲应力   纳米压痕   polycrystalline silicon   grain size   crystal orientation distribution   bending stress   nano-indentation  
 
Abstract
The photoluminescence (PL) technology was used to identify the crystal orientation of the polycrystalline silicon wafer, the elastic modulus of polycrystalline silicon wafer in different orientations was measured through the nano-indentation experiment. The finite element program was used to establish the polycrystalline silicon wafer finite element model containing the information of grain size and grain orientation, and then the elastic modulus got from the nano-indentation experiment were inputted to the model to obtain the bending strength of polycrystalline silicon wafer with different grain sizes and grain orientation distributions; the simulation results were verified by three-point bending experiment. The results show that elastic modulus and hardness of polycrystalline silicon wafter in different grain orientation distributions are different. The maximum bending stress value and the maximum stress position of the polycrystalline silicon wafer are affected by crystal orientation distribution. Grain shapes will affect the maximum bending stress. Reducing the grain size can reduce the maximum bending stress.The model's correction is verified by the three-point bending experiment.

中图分类号 TF533.2 TG115.5   DOI 10.11973/jxgccl201701020

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51335002,51272033)

收稿日期 2015/12/29

修改稿日期 2016/12/9

网络出版日期

作者单位点击查看

备注王轶伦(1990-),男,江苏常州人,硕士研究生。

引用该论文: WANG Yi-lun,DING Jian-ning,YUAN Ning-yi,JIANG Cun-hua,CHEN Xiao. Finite Element Modelling for Bending Stress of Polycrystalline Silicon Wafer with Different Grain Sizes and Crystal Orientation Distributions[J]. Materials for mechancial engineering, 2017, 41(1): 96~102
王轶伦,丁建宁,袁宁一,姜存华,陈潇. 不同晶粒尺寸和晶向分布多晶硅片弯曲应力的有限元模拟[J]. 机械工程材料, 2017, 41(1): 96~102


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】OHSHITA Y, AOKI M, KOJIMA T,et al. Thin (<100μm) crystalline silicon solar cell fabrication using low cost feedstock and diamond wire slice technologies[C]//Photovoltaic Specialists Conference (PVSC), 201238th IEEE.[S.l.]:[s.n.],2012:002237-002239.
 
【2】CAO F, CHEN K, ZHANG J, et al. Next-generation multi-crystalline silicon solar cells:Diamond-wire sawing, nano-texture and high efficiency[J]. Solar Energy Materials and Solar Cells, 2015, 141:132-138.
 
【3】SWANSON R M. A vision for crystalline silicon solar cells[J]. Sun Power Corporation, 2004,14(5):443-453.
 
【4】BRUTON T M. General trends about photovoltaics based on crystalline silicon[J]. Solar Energy Materials and Solar Cells, 2002, 72(1):3-10.
 
【5】BRUN X F, MELKOTE S N. Analysis of stresses and breakage of crystalline silicon wafers during handling and transport[J]. Solar Energy Materials and Solar Cells, 2009, 93(8):1238-1247.
 
【6】WANG P A. Industrial challenges for thin wafer manufacturing[C]//Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on IEEE.[S.l.]:[s.n.],2006:1179-1182.
 
【7】POPOVICH V A, YUNUS A, JANSSEN M,et al. Effect of silicon solar cell processing parameters and crystallinity on mechanical strength[J]. Solar Energy Materials and Solar Cells, 2011, 95(1):97-100.
 
【8】PAUL I, MAJEED B, RAZEEB K M, et al. Statistical fracture modelling of silicon with varying thickness[J]. Acta Materialia, 2006, 54(15):3991-4000.
 
【9】解希玲, 谭毅, 李佳艳, 等. 腐蚀时间对多孔硅层形貌及多晶硅性能的影响[J]. 机械工程材料, 2011, 35(9):58-60.
 
【10】SCHOENFELDER S, BOHNE A, BAGDAHN J. Comparison of test methods for strength characterization of thin solar wafer[C]//22nd European Photovoltaic Solar Energy Conference. Milan, Italy:[s.n.], 2007:168-178.
 
【11】李世杰.多晶硅太阳能电池酸腐蚀制绒研究[D].北京:北京交通大学,2014.
 
【12】OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20.
 
【13】郭荻子, 林鑫, 赵永庆, 等. 纳米压痕方法在材料研究中的应用[J]. 材料导报, 2011, 25(13):10-14.
 
【14】DING J N, MENG Y G, WEN S Z. Mechanical properties and anti wearability studies of multilayer thin coatings on cutting tools[J]. Chinese Journal of Mechanical Engineering, 2000, 13(2):102-107.
 
【15】OHYA T, IRI M, MUROTA K. Improvements of the incremental method for the Voronoi diagram with computational comparison of various algorithms[J]. J Oper Res Soc Japan, 1984, 27(4):306-336.
 
【16】MURA T. Micromechanics of defects in solids[M].[S.l.]:Springer Science & Business Media, 2012.
 
【17】MEYERSM M A, ASHWORTH E. A model for the effect of grain size on the yield stress of metals[J]. Philosophical Magazine A, 1982, 46(5):737-759.
 
【18】TVERGAARD V, HUTCHINSON J W. The stress characters of tricrystals[J]. J Am Ceram Soc, 1988, 71(3):157-163.
 
相关信息
   标题 相关频次
 2A12铝合金喷射沉积坯的形状控制及显微组织
 2
 304不锈钢晶粒尺寸的超声检测
 2
 410 MPa级钢制无缝压力管高温拉伸测试结果异常原因分析
 2
 Al-4B中间合金对AZ31镁合金晶粒尺寸和力学性能的影响
 2
 ER90S-G焊丝接头力学性能出现差异的原因
 2
 F45MnVS非调质钢动态再结晶模型与晶粒尺寸数值模拟
 2
 Fe-Cr-Ni电镀层在工业废水中的腐蚀行为
 2
 Nitronic 50不锈钢低温冲击韧性大幅降低原因分析
 2
 Q345钢热变形奥氏体晶粒尺寸的数值模拟
 2
 X射线衍射分析高能喷丸后45钢的表层晶粒尺寸
 2
 玻璃钢管试压渗漏的原因
 2
 玻璃钢集油管道泄漏原因
 2
 不同Si3N4相涂层坩埚中全熔多晶硅锭的制备及表征
 2
 不同厚度电镀铬层的组织及性能
 2
 不同温度锻压时Inconel 625镍基高温合金的形变量和晶粒尺寸
 2
 测试位置对纳米压痕法测Nb/Cu复合材料线材硬度的影响
 2
 超声波对AZ31B镁合金凝固组织和力学性能的影响
 2
 超声-脉冲电铸工艺参数对镍铸层晶粒尺寸的影响
 2
 超塑性TC4钛合金板晶粒的金相显示方法
 2
 超细晶粒钢的疲劳性能
 2
 磁控溅射不同元素掺杂WS2薄膜的组织和纳米压痕力学性能
 2
 大尺寸变形FGH96高温合金涡轮盘晶粒尺寸和硬度相关性的表征
 2
 大型环形件用2219铝合金的动态再结晶行为
 2
 低压转子叶片叉型叶根销钉开裂原因
 2
 粉体粒径对氧化锆陶瓷断裂韧性的影响
 2
 腐蚀时间对多孔硅层形貌及多晶硅性能的影响
 2
 高温合金激光冲击强化数值模拟及其疲劳寿命预测
 2
 固溶处理对GH984G合金冷轧无缝管组织及硬度的影响
 2
 机械合金化-退火法制备两相区铝钌合金粉
 2
 机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织
 2