搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
P92钢多轴蠕变本构模型的建立及验证
          
Building and Validation of a Multiaxial Creep Constitutive Model for P92 Steel

常愿   徐鸿   蓝翔  
摘    要
在650℃、120~145 MPa条件下对P92钢光滑试样和双缺口试样进行了蠕变试验,基于Liu-Murakami和Norton-Bailey本构模型,建立了一种修正的蠕变本构模型并加以验证;在此基础上,明确模型常数的确定方法,并对P92钢光滑试样和双缺口试样的蠕变行为进行了模拟。结果表明:修正后的模型可以有效地模拟P92钢650℃蠕变的三个阶段,缓解了传统Kachanov-Robotnov(K-R)模型对网格敏感性的问题;双缺口试样的蠕变断裂寿命均远大于相同条件下光滑试样的,即存在缺口增强效应,且缺口锐度越大,缺口增强效应越明显;损伤量与多轴度之间存在正相关性。
标    签 P92钢   多轴应力   蠕变   本构模型   P92 steel   multiaxial stress   creep   constitutive model  
 
Abstract
Creep experiments were conducted on plain and double-notched specimens of P92 steel under conditions of 650℃ and 120-145 MPa. Based on Liu-Murakami and Norton-Bailey constitutive models, a modified creep constitutive model was built and verified. On this basis, the determination method of model constants was confirmed, and the creep behaviors for the plain and double-notched specimens of P92 steel were simulated. The results show that the modified model was able to simulate the three stages of creep process at 650℃ of P92 steel, and reduced the problem of mesh-sensitivity of the conventional Kachanov-Robotnov (K-R) model. The creep frature life of the double-notched specimen was longer than that of the plain specimen under the same condition, namely the notch strengthening effect. And with the increase of the notch acuity ratio, the strengthening effect became more obvious. The damage quantity had a positive correlation with the multiaxiality.

中图分类号 TG113.25   DOI 10.11973/jxgccl201702024

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51134016);中央高校基本科研业务费专项资金资助项目(2014XS21)

收稿日期 2016/6/13

修改稿日期 2016/12/26

网络出版日期

作者单位点击查看

备注常愿(1987-),女,河北石家庄人,博士研究生。

引用该论文: CHANG Yuan,XU Hong,LAN Xiang. Building and Validation of a Multiaxial Creep Constitutive Model for P92 Steel[J]. Materials for mechancial engineering, 2017, 41(2): 112~118
常愿,徐鸿,蓝翔. P92钢多轴蠕变本构模型的建立及验证[J]. 机械工程材料, 2017, 41(2): 112~118


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】KACHANOV L M. On the creep fracture time[J]. Izvestia Academii Nauk Sssr Otdelenie Tekhnicheskich Nauk, 1958, 8:26-31.
 
【2】ROBOTNOV Y N. Creep rupture[C]//Proceedings of the Ⅻ International Congress on Application Mechanisms. Berlin:Springer, 1969.
 
【3】KWON O, TACK A J, THOMAS C W,et al. The development of a multiaxial stress rupture criterion for bolting steels using new and service aged materials[J]. International Journal of Pressure Vessels and Piping, 2000, 77:91-97.
 
【4】KWON O, THOMAS C W,KNOWLES D. Multiaxial stress rupture behavior and stress-state sensitivity of creep damage distribution in Dureheter 1055 and 2.25Cr1Mo steel[J]. International Journal of Pressure Vessels and Piping, 2004, 81:535-542.
 
【5】HYDE T H, XIA L, BECKER A A. Prediction of creep failure aeroengine materials under multi-axial stress states[J]. International Journal of Mechanical Sciences, 1996, 38:385-403.
 
【6】GOYAL S, LAHA K, DAS C R, et al. Finite element analysis of uniaxial and multiaxial state of stress on creep rupture behavior of 2.25Cr-1Mo steel[J]. Materials Science and Engineering A, 2013, 563:68-77.
 
【7】GOYAL S, LAHA K, DAS C R, et al. Finite element analysis of effect of triaxial state of stress on creep cavitation and rupture behavior of 2.25Cr-1Mo steel[J]. International Journal of Mechanical Sciences, 2013, 75:233-243.
 
【8】STEWART C M, GORDON A P. Modeling the temperature dependence of tertiary creep damage of a Ni-based alloy[J]. Journal of Pressure Vessel Technology, 2009,131:051406.
 
【9】STEWART C M, GORDON A P. Strain and damage-based analytical methods to determine the Kachanov-Rabotnov tertiary creep-damage constants[J]. International Journal of Damage Mechanics, 2012, 21:1186-1201.
 
【10】JIANG Y P, GUO W L, YUE Z F,et al. On the study of the effects of notch shape on creep damage development under constant loading[J]. Materials Science and Engineering A, 2006, 437:340-347.
 
【11】JIANG Y P, GUO W L, YUE Z F. On the study of the creep damage development in circumferential notch specimens[J]. Computational Materials Science, 2007, 38:653-659.
 
【12】HYDE T H, SUN W, WILLIAMS J A. Life estimation of pressurized pipe bends using steady-state creep reference rupture stresses[J]. International Journal of Pressure Vessels and Piping, 2002, 79:799-805.
 
【13】HYDE T H, BECKER A A, SUN W, et al. Influence of geometry change on creep failure life of 90° pressurized pipe bends with no initial ovality[J]. International Journal of Pressure Vessels and Piping, 2005, 82:509-516.
 
【14】OTHMAN A M, HAYHURST D R, DYSON B F. Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations[C]//Proceedings of the Royal Society of London A:Mathematical, Physical and Engineering Sciences.[S.l.]:The Royal Society, 1993, 441(1912):343-358.
 
【15】MUSTATA R, HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 565℃-675℃[J]. International Journal of Pressure Vessels and Piping, 2005, 82:363-372.
 
【16】KOWALEWSKI Z L, HAYHURST D R, DYSON B F. Mechanisms-based creep constitutive equations for analuminium alloy[J]. The Journal of Strain Analysis for Engineering Design, 1994, 29:309-316.
 
【17】LIU Y, MURAKAMI S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis[J]. JSME International Journal, 1998, 41:57-65.
 
【18】HYDE C J, HYDE T H, SUN W, et al.Damage mechanics based predictions of creep crack growth in 316 stainless steel[J]. Engineering Fracture Mechanics, 2010, 77:2385-2402.
 
【19】ROUSE J P, SUN W, HYDE T H, et al. Comparative assessment of several creep damage models for use in life prediction[J]. International Journal of Pressure Vessels and Piping, 2013, 108/109:81-87.
 
【20】WEBSTER G A, HOLDWORTH S R, LOVEDAY M S, et al. A code of practice for conducting notched bar creep tests and for interpreting the data[J]. Fatigue and Fracture of Engineering Materials & Structures, 2004, 27:319-342.
 
【21】姚华堂,轩福贞,沈树芳,等. 高温材料的多轴蠕变试验方法[J]. 机械工程材料,2008, 32(1):5-9.
 
【22】张玉财. 多轴应力状态下钎焊接头蠕变损伤与裂纹扩展研究[D]. 上海:华东理工大学, 2016:36-41.
 
【23】倪永中,蓝翔. 一种用于P92钢寿命预测的蠕变模型研究[J]. 应用力学学报, 2014, 31(6):978-982.
 
【24】温建锋. 基于应变的损伤力学模型及其在蠕变裂纹扩展数值模拟中的应用[D]. 上海:华东理工大学, 2014:11.
 
【25】WEN J F, TU S D. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics, 2014, 123:197-210.
 
相关信息
   标题 相关频次
 P92钢在内压和拉伸组合加载下的蠕变行为
 6
 壁厚不均对平面内弯矩作用下P92钢管弯头蠕变寿命的影响
 4
 300 MW亚临界机组锅炉屏式过热器管爆裂原因分析
 2
 4Cr5MoSiV1热作模具钢的热变形行为与热加工图
 2
 6000系铝合金薄壁结构压缩断裂行为的有限元模拟
 2
 650 ℃等温时效过程中P92钢沉淀相的转变规律
 2
 7075铝合金热压缩动态软化行为的本构模型
 2
 C/SiC复合材料高温蠕变的声发射特性
 2
 DZ411定向凝固镍基合金蠕变性能的快速评估方法
 2
 E-玻璃纤维2D编织层铺增强复合材料的损伤力学本构模型及应用
 2
 Fe-10Mn-2Al-0.1C中锰钢的本构模型与热加工图
 2
 GH4169高温合金的动态力学行为及其本构关系
 2
 GH4169合金的反常应力松弛行为
 2
 Haynes 282镍基合金在600~700℃超临界水中的氧化特性
 2
 Lamb波损伤散射及损伤成像的模拟
 2
 P91和P92马氏体耐热钢焊缝中的黑线
 2
 P92钢的高温低周疲劳行为及寿命预测
 2
 P92钢的过冷奥氏体等温转变曲线及显微组织
 2
 P92钢的蠕变-疲劳损伤行为及蠕变-疲劳损伤本构模型的建立
 2
 P92钢焊接接头超声波检测缺陷的分析
 2
 P92钢焊接接头性能及其焊接材料研究进展
 2
 P92钢在蠕变-疲劳交互作用下的初始循环特性
 2
 P92钢中Laves相在时效过程中的形成及粗化规律
 2
 T92钢在蠕变过程中Laves相的析出与熟化行为
 2
 TC17钛合金热变形行为及本构模型
 2
 TC8钛合金的动态力学性能及本构关系
 2
 TiAl金属间化合物材料本构模型的研究进展
 2
 γ'相对镍基高温合金强度、疲劳与蠕变性能影响的研究进展
 2
 氨分解反应炉炉胆失效分析
 2
 板中Lamb波与管中纵向模态的传播特性的对比分析
 2