搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
原位合成层状Ti-(TiB+TiC)/Ti复合材料的组织与力学性能
          
Microstructure and Mechanical Properties of In-situ Fabricated Laminated Ti-(TiB+TiC)/Ti Composites

摘    要
鉴于颗粒增强钛基复合材料在提高强度的同时会引起塑韧性的下降,借鉴性能优异生物材料的叠层微观结构,利用粉末冶金结合热加工工艺(热锻+退火)的方法,制备了增强体体积分数为5%~15%的原位合成层状Ti-(TiB+TiC)/Ti复合材料,并对其组织和力学性能进行了研究。结果表明:复合材料组织完全致密化,复合层中团聚的增强体被分散,纯钛层α晶粒沿锻造方向排列;复合材料的室温抗拉强度较纯钛的提高近一倍,退火后其伸长率明显提升;随增强体体积分数的增加,复合材料的强度稍有提高,但塑性下降较为明显,增强体体积分数为5%的复合材料具备优异的综合力学性能,与增强体体积分数为15%的复合材料相比,强度仅降低了4%,但伸长率却增加了3.8倍。
标    签 钛基复合材料   层状结构   增强体   显微组织   力学性能   titanium matrix composite   laminated structure   reinforcement   microstructure   mechanical property  
 
Abstract
The particulate reinforced titanium matrix composites can improve the strength while reduce the ductility and toughness, therefore learned from the multilayer microstructure of nature biological materials with excellent properties, the laminated structure Ti-(TiB+TiC)/Ti composites with 5%-15% volume fraction of reinforcements were prepared by powder metallurgy and hot working processes (hot forging and annealing). Microstructure and mechanical properties of Ti-(TiB+TiC)/Ti composites were also analyzed. The results show that the microstructure of composites was densification, and the agglomerated reinforcements in the composite layer were well dispersed and distributed uniformly in the titanium matrix. Meanwhile, the α grains in pure titanium layer aligned along the forging direction. The room temperature tensile strength of laminated Ti-(TiB+TiC)/Ti composites was nearly double than that of pure titanium and elongation had the significant improvement after annealing. When the volume fraction of reinforcements increased, the strength of composites improved but the ductility dereased apparently. The composites with 5% volume fraction of reinforcements performed the excellent mechanical properties, which obtained an improvement by 3.8 times in elongation with 4% reduction in strength compared with composites with 15% volume fraction of reinforcements.

中图分类号 TB333   DOI 10.11973/jxgccl201705004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家自然科学基金资助项目(51371114,51501112);中国博士后基金资助项目(2014M550235,2015T80431);上海博士后基金资助项目(14R21410900)

收稿日期 2015/11/16

修改稿日期 2017/3/15

网络出版日期

作者单位点击查看

备注段宏强(1991-),男,安徽亳州人,硕士研究生.

引用该论文: DUAN Hongqiang,HAN Yuanfei,LÜ,Weijie,WANG Liqiang,MAO Jianwei,ZHANG Di. Microstructure and Mechanical Properties of In-situ Fabricated Laminated Ti-(TiB+TiC)/Ti Composites[J]. Materials for mechancial engineering, 2017, 41(5): 17~21
段宏强,韩远飞,吕维洁,王立强,毛建伟,张荻. 原位合成层状Ti-(TiB+TiC)/Ti复合材料的组织与力学性能[J]. 机械工程材料, 2017, 41(5): 17~21


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHANG Z G, QIN J N, ZHANG Z W,et al. Effect of β heat treatment temperature on microstructure and mechanical properties of in situ titanium matrix composites[J]. Material Design, 2010, 31(9):4269-4273.
 
【2】WANG J H, GUO X L, QIN J N, et al. Microstructure and mechanical properties of investment casted titanium matrix composites with B4C additions[J]. Material Science & Engineering A, 2015, 628:366-373.
 
【3】ZHANG C J, KONG F T, XIAO S L,et al. Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB+TiC) reinforcements[J]. Material Science & Engineering A, 2012, 548:152-160.
 
【4】ZHANG Z G, QIN J N, ZHANG Z W, et al. Microstructure effect on mechanical properties of in situ synthesized titanium matrix composites reinforced with TiB and La2O3[J]. Mater Letters, 2010, 64(3):361-363.
 
【5】KOBAYASHI M, FUNAMI K, SUZUKI S, et al. Manufacturing process and mechanical properties of fine TiB dispersed Ti-6Al-4V alloy composites obtained by reaction sintering[J]. Material Science & Engineering A, 1998, 243:279-284.
 
【6】FAN Z, MIODOWNIK A P. Microstructural evolution in rapidly solidified Ti-7.5Mn-0.5B alloy[J].Acta Materialia, 1996, 44(1):93-110.
 
【7】GODFREY T M T, WISBEY A, GOODWIN P S, et al. Microstructure and tensile properties of mechanically alloyed Ti-6A1-4V with boron additions[J]. Material Science & Engineering A, 2000, 282:240-250.
 
【8】LI B S, SHANG J L, GUO J J, et al. In situ observation of fracture behavior of in situ TiBw/Ti composites[J]. Material Science & Engineering A, 2004, 383:316-322.
 
【9】吕维洁. 原位自生钛基复合材料研究综述[J]. 中国材料进展, 2010, 29(4):41-48.
 
【10】YAN Z Q, CHEN F, CAI Y X,et al. Microstructure and mechanical properties of in-situ synthesized TiB whiskers reinforced titanium matrix composites by high-velocity compaction[J]. Powder Technology, 2014, 267:309-314.
 
【11】刘钊, 吕维洁, 卢俊强, 等. 原位合成(TiB+TiC)/Ti-8Al-1Mo-1V复合材料的显微组织和室温力学性能[J].机械工程材料, 2009, 33(5):1-4.
 
【12】CLEGG W J, KENDALL K, ALFORD N M, et al. A simple way to make tough ceramics[J]. Nature, 1990, 347:455-457.
 
【13】HAN Y F, LI J X, HUANG G F, et al. Effect of ECAP numbers on microstructure and properties of titanium matrix composite[J]. Materials & Design, 2015, 75:113-119.
 
【14】MEYERS M A, MISHRA A, BENSON D J. Mechanical properties of nanocrystalline materials[J]. Progress in Materials Science, 2006, 51(4):427-556.
 
【15】LU K. The future of metals[J]. Science, 2010, 328:319-320.
 
【16】PANDEY A B, MAJUMDAR B S, MIRACLE D B. Laminated particulate-reinforced aluminum composites with improved toughness[J].Acta Materialia, 2001, 49(3):405-417.
 
【17】LIU B X, HUANG L J, GENG L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing[J]. Material Science & Engineering A, 2013, 583:182-187.
 
【18】ROHATGI A, HARACH D J, VECCHIO K S, et al. Resistance-curve and fracture behavior of Ti-Al3Ti metallic-intermetallic laminate (MIL) composites[J]. Acta Materialia, 2003, 51(10):2933-2957.
 
【19】HAN Y F, DUAN H Q, LU W J, et al. Fabrication and characterization of laminated Ti-(TiB+La2O3)/Ti composite[J]. Progress in Natural Science:Materials International, 2015, 25(5):453-459.
 
【20】吕维洁, 郭相龙, 王立强, 等. 原位自生非连续增强钛基复合材料的研究进展[J]. 航空材料学报, 2014, 34(4):139-146.
 
【21】JIA L, LI S F, IMAI H, et al. Size effect of B4C powders on metallurgical reaction and resulting tensile properties of Ti matrix composites by in-situ reaction from Ti-B4C system under a relatively low temperature[J]. Material Science & Engineering A, 2014, 614:129-135.
 
【22】XU C, ZHU W F. Comparison of microstructures and mechanical properties between forging and rolling processes for commercially pure titanium[J]. Transaction of Nonferrous Metals Society of China, 2012, 22(8):1939-1946.
 
【23】MOSKALENKO V A, SMIRNOV A R. Temperature effect on formation of reorientation bands in α-Ti[J].Material Science & Engineering A, 1998, 246:282-288.
 
【24】LIU B X, HUANG L J, GENG L, et al. Fabrication and superior ductility of laminated Ti-TiBw/Ti composites by diffusion welding[J]. Journal of Alloys & Compounds, 2014, 602(10):187-192.
 
相关信息
   标题 相关频次
 TiB+TiC+La2O3三元颗粒增强IMI834钛基复合材料的裂纹扩展行为
 11
 热氢处理对(TiB, TiC)/Ti-6Al-4V复合材料显微组织和力学性能的影响
 10
 氧含量对原位合成(TiB+La2O3)/Ti复合材料力学性能的影响
 10
 原位自生(TiB+La2O3)/TC4钛基复合材料的显微组织和力学性能
 10
 原位自生(TiC+TiB)/Ti复合材料的显微组织与残余应力
 10
 钛基复合材料TIG焊接接头的显微组织和拉伸性能
 8
 原位合成(TiB+TiC)/Ti-6Al-4V基复合材料的室温及高温拉伸性能
 8
 热氢处理对 (TiB, TiC)/Ti1100复合材料显微组织和相变点的影响
 7
 原位合成(TiB+TiC)/Ti-8Al-1Mo-1V复合材料的显微组织和室温力学性能
 7
 原位自生TiC与TiB增强钛基复合材料的组织和力学性能
 7
 铝含量对TB5钛合金组织和力学性能的影响
 6
 钛基复合材料小冲杆试验的有限元分析
 6
 选择性激光熔化原位自生TiB+La2O3/TC4钛基复合材料的组织和力学性能
 6
 原位合成不同基体组织7715D钛基复合材料的高温力学性能
 6
 原位自生非连续颗粒增强钛基复合材料的组织和力学性能
 6
 搅拌摩擦加工制备TC4钛合金表面载银层的组织形貌和力学性能
 5
 冷轧连续退火时均热温度和时间对MS1470钢组织和性能的影响
 5
 (TiB+La2O3)/IMI834钛基复合材料超塑性变形行为及显微组织演变
 4
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 4
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 4
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 4
 12Cr13钢预热处理工艺参数优化
 4
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 4
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 4
 2024铝合金电子束焊接接头的显微组织与力学性能
 4
 240 MPa级高强IF钢的冷轧压下率和退火温度
 4
 300 MW机组锁口叶片断裂原因分析
 4
 3003铝合金无缝管制备过程中的显微组织与力学性能变化
 4
 3D打印18Ni300模具钢的显微组织及力学性能
 4
 5 mm厚6005A-T6铝合金双轴肩搅拌摩擦焊接头的组织及性能
 4