搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
新型分散液液微萃取-石墨炉原子吸收光谱法测定地质样品中银
          
GFAAS Determination of Ag in Geological Samples with Novel Dispersive Liquid Liquid Microextraction

摘    要
采用基于正辛醇为萃取剂的新型分散液液微萃取-石墨炉原子吸收光谱法测定地质样品中银的含量。优化的试验条件如下:①萃取剂正辛醇的用量为0.30 mL;②2 g·L-1对称二苯基硫脲(络合剂)乙醇溶液的用量为1.0 mL;③分散剂乙醇的用量为10 mL;④样品溶液的pH为3.0~7.0;⑤灰化温度为500℃;⑥原子化温度为1 700℃。银的质量浓度在0.02~0.50 μg·L-1内与其对应的吸光度呈线性关系,检出限(3s)为4.7 pg。方法应用于地质样品的分析,测定值与认定值相符,测定值的相对标准偏差(n=5)为3.2%~6.8%。
标    签 石墨炉原子吸收光谱法   分散液液微萃取     地质样品   GFAAS   dispersive liquid liquid microextraction   Ag   geological sample  
 
Abstract
GFAAS was applied to the determination of Ag in geological samples with novel dispersive liquid liquid microextraction using octanol as extractant. The optimized conditions found were as follows:① amount of octanol (extraction solvent) was 0.30 mL; ② amount of 2 g·L-1 DPTU (complexing agent) ethanol solution was 1.0 mL; ③ amount of ethanol (dispersant) was 10 mL; ④ pH of sample solution was 3.0-7.0; ⑤ ashing temperature was 500℃; ⑥ atomization temperature was 1 700℃. Linear relationship between values of absorbance and mass concentration of Ag was kept in the range of 0.02-0.50 μg·L-1, with detection limit (3s) of 4.7 pg. The proposed method was applied to the analysis of geological samples, giving results in consistency with the certified values with RSD's (n=5) in the range of 3.2%-6.8%.

中图分类号 O657.31   DOI 10.11973/lhjy-hx201805010

 
  中国光学期刊网论文下载说明


所属栏目 工作简报

基金项目

收稿日期 2017/5/22

修改稿日期

网络出版日期

作者单位点击查看

备注鲁群苟,高级工程师,主要从事质量检测工作,632212642@qq.com

引用该论文: LU Qungou. GFAAS Determination of Ag in Geological Samples with Novel Dispersive Liquid Liquid Microextraction[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2018, 54(5): 537~540
鲁群苟. 新型分散液液微萃取-石墨炉原子吸收光谱法测定地质样品中银[J]. 理化检验-化学分册, 2018, 54(5): 537~540


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】董云侠,贾洪波,颜世凯.滇中砂岩铜矿伴生银的赋存状态及富集规律初探[J].吉林地质, 2015,34(1):45-49.
 
【2】聂潇,尹京武,陈浦浦,等.河南栾川赤土店西沟铅锌银矿床中银矿物的赋存状态及成矿机理探讨[J].矿物岩石地球化学通报, 2015,34(1):184-190.
 
【3】李跃光,陈为亮.贵金属元素分析中的分离富集技术应用进展[J].贵金属, 2012(4):71-74.
 
【4】WAN I W, ABD ALI L I, SULAIMAN A, et al. Application of solid-phase extraction for trace elements in environmental and biological samples:A review[J]. Critical Reviews in Analytical Chemistry, 2014,44(3):233-254.
 
【5】HAGAROV I. Cloud point extraction utilizable for separation and preconcentration of (ultra)trace elements in biological fluids before their determination by spectrometric methods:A brief review[J]. Chemical Papers, 2017,71(5):869-879.
 
【6】HERRERO-LATORRE C, BARCIELA-GARCÍA J, GARCÍA-MARTÍN S, et al. Magnetic solid-phase extraction using carbon nanotubes as sorbents:A review[J]. Analytica Chimica Acta, 2015,892:10-26.
 
【7】曹江平,邸宏伟,周继梅,等.分散液液微萃取技术的研究进展[J].分析测试学报, 2016,35(7):913-921.
 
【8】邓勃.一种新的液液萃取模式-分散液液微萃取[J].现代科学仪器, 2010(3):123-130.
 
【9】ROSA F C, DUARTE F A, PANIZ J N G, et al. Dispersive liquid-liquid microextraction:An efficient approach for the extraction of Cd and Pb from honey and determination by flame atomic absorption spectrometry[J]. Microchemical Journal, 2015,123:211-217.
 
【10】SITKO R, KOCOT K, ZAWISZA B, et al. Liquid-phase microextraction as an attractive tool for multielement trace analysis in combination with X-ray fluorescence spectrometry:An example of simultaneous determination of Fe, Co, Zn, Ga, Se and Pb in water samples[J]. Janalatspectrom, 2011,26(10):1979-1985.
 
【11】贾晓宇,刘欣丽,韩熠,等.分散液液微萃取-流动注射-电感耦合等离子体质谱同时测定镉,铅和铋[J].分析化学, 2009,37(1):51-51.
 
【12】史震宇.分散液液微萃取技术在环境金属离子分析中的影响因素及应用[J].中国环境监测, 2013,29(6):144-150.
 
【13】NAEEMULLA H, TUZEN M, KAZI T G. Simple and green switchable dispersive liquid-liquid microextraction of cadmium in water and food samples[J]. RSC Advances, 2016,6(34):28767-28773.
 
【14】LIANG P, PENG L. Determination of silver(Ⅰ) ion in water samples by graphite furnace atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction[J]. Microchimica Acta, 2010,168(1):45-50.
 
【15】DASBASI T, SACMACI S, VLGEN A, et al. A simple dispersive liquid-liquid microextraction method for determination of Ag(Ⅰ) by flame atomic absorption spectrometry[J]. Journal of Industrial & Engineering Chemistry, 2015,28:316-321.
 
【16】马晓国,罗颂华,曾倩.分散液液微萃取-石墨炉原子吸收光谱法测定环境水样中的痕量镉[J].生态环境学报, 2011,20(12):1909-1911.
 
【17】丁宗庆,刘光东.分散液液微萃取-数码比色法测定环境及生物样品中亚硝酸根[J].分析化学, 2009,37(1):119-122.
 
相关信息
   标题 相关频次
 石墨炉原子吸收光谱法测定地球化学样品中痕量金和银
 4
 直读发射光谱仪测定地质样品中银、硼和锡的含量
 3
 X射线荧光光谱法测定地质样品中氯的含量
 2
 沉淀分离金-电感耦合等离子体原子发射光谱法测定镀金溶液中铁、钴、镍、铜、银、铅
 2
 低共熔溶剂分散液液微萃取-悬浮固化-高效液相色谱法测定水产品中3种内分泌干扰物的含量
 2
 地质样品中氯的测定方法的近期进展
 2
 高分辨电感耦合等离子体质谱法测定地质样品中的微量锗
 2
 铬(Ⅵ)-二乙基二硫代甲酸钠共沉淀-原子吸收光谱法测定环境水样中铁、锰、锌、镉
 2
 固态进样方式石墨炉原子吸收光谱法测定沙痕量金
 2
 活性炭吸附-石墨炉原子吸收光谱法测定土壤样品中铊
 2
 交流电弧原子发射光谱法测定地质样品中的微量银
 2
 金银花中微量铅、镉、汞、砷的测定
 2
 离子交换分离-石墨炉原子吸收光谱法测定高纯铟中痕量镍
 2
 离子交换分离-石墨炉原子吸收光谱法测定酵母抽提物中铅和镉
 2
 离子交换分离-石墨炉原子吸收光谱法测定饮用水中痕量铊
 2
 离子色谱法测定氰化浸出液中金、银、铜、铁、钴、镍和锌的含量
 2
 离子液体分散液液微萃取-水相固化-高效液相色谱法测定食用菌中3种拟除虫菊酯类农药的残留量
 2
 纳米石墨对无氰电刷镀银镀层性能的影响
 2
 三磁场塞曼背景校正技术用于石墨炉原子吸收光谱法测定水中铝
 2
 石墨炉原子吸收光谱法测定玻璃器皿浸出的锑量
 2
 石墨炉原子吸收光谱法测定大白鼠脑组织中痕量铝
 2
 石墨炉原子吸收光谱法测定复合疏松剂中铝
 2
 石墨炉原子吸收光谱法测定工作场所空气中铬及其化合物
 2
 石墨炉原子吸收光谱法测定海产品中镉含量
 2
 石墨炉原子吸收光谱法测定含盐食品中铅
 2
 石墨炉原子吸收光谱法测定航空铜合金中微量铅
 2
 石墨炉原子吸收光谱法测定湖光岩地区岩石中镉
 2
 石墨炉原子吸收光谱法测定化探样品中痕量金
 2
 石墨炉原子吸收光谱法测定酱油中铅含量
 2
 石墨炉原子吸收光谱法测定矿石中铂、钯、铑、铱
 2