搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
等离子体源渗氮奥氏体不锈钢的摩擦磨损行为
          
Friction and Wear Behavior of Plasma Source Nitrided Austenitic Stainless Steel

摘    要
采用等离子体源渗氮技术对AISI 316奥氏体不锈钢进行450 ℃×6 h改性处理,通过干摩擦磨损试验对比研究了该不锈钢基体和表面改性层在不同载荷下与Si3N4陶瓷球摩擦副对磨时的摩擦磨损行为,观察了磨损形貌,并对其磨损机制进行了分析。结果表明:等离子体源渗氮后,试验钢表面形成了厚度约17 μm的单一面心立方结构的高氮γN相改性层,改性层中氮元素的原子分数为15%~20%,最大显微硬度约1 510 HV0.01;与基体相比,在相同载荷下γN相改性层具有相当或更低的摩擦因数,且比磨损率均降低一个数量级以上,耐磨性能显著提高;基体的磨损机制主要为黏着磨损,而γN相改性层在较低载荷(2~4 N)下的磨损机制主要为氧化磨损,在较高载荷(6~8 N)下的主要为磨粒磨损。
标    签 等离子体源渗氮   奥氏体不锈钢   γN   摩擦磨损   磨损机制   plasma source nitriding   austenitic stainless steel   γN phase   friction and wear   wear mechanism  
 
Abstract
AISI 316 austenitic stainless steel was modified by plasma source nitriding technique at 450℃ for 6 h. The friction and wear behavior of the stainless steel substrate and surface modified layer against Si3N4 ceramic ball friction pairs was investigated comparatively under different loads by dry friction and wear tests. The wear morphology was observed and the wear mechanism was analyzed. The results show that a high-nitrogen γN phase layer with single face-centered-cubic structure and thickness of 17 μm was prepared on the surface of the tested steel after plasma source nitriding. The atom fraction of nitrogen element of γN phase layer was 15%-20% and the highest micro-hardness was about 1 510 HV0.01. The friction coefficient of the γN phase layer was equivalent to or smaller than that of the substrate under the same load, the specific wear rate was reduced by one order magnitude and the wear resistance was improved. The main wear mechanism of the substrate was adhesive wear. The main wear mechanism of the γN phase layer was oxidative wear under relatively low loads (2-4 N) and abrasive wear under relatively high loads (6-8 N).

中图分类号 TG147   DOI 10.11973/jxgccl201805003

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 营口理工学院科研基金资助项目(QNL201709);大学生创新创业训练计划项目

收稿日期 2017/4/1

修改稿日期 2018/4/13

网络出版日期

作者单位点击查看

备注李广宇(1981-),男,辽宁营口人,副教授,博士

引用该论文: LI Guangyu,ZENG Xinrui,WANG Nan,GU Xuezhong,FANG Ziqi. Friction and Wear Behavior of Plasma Source Nitrided Austenitic Stainless Steel[J]. Materials for mechancial engineering, 2018, 42(5): 14~19
李广宇,曾心睿,王楠,谷雪忠,方子奇. 等离子体源渗氮奥氏体不锈钢的摩擦磨损行为[J]. 机械工程材料, 2018, 42(5): 14~19


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHANG Z L, BELL T. Structure and corrosion resistance of plasma nitrided stainless steel[J]. Surface Engineering, 1985, 1(2):131-136.
 
【2】LEI M K, ZHU X M. Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance[J]. Surface & Coatings Technology, 2005, 193(1/2/3):22-28.
 
【3】MANOVA D, SCHOLZE F, MÄNDL S, et al. Nitriding of austenitic stainless steel using pulsed low energy ion implantation[J]. Surface & Coatings Technology, 2010, 205(18/19):286-289.
 
【4】LI G Y, LEI M K. Microstructure and properties of plasma source nitrided AISI 316 austenitic stainless steel[J]. Journal of Materials Engineering & Performance,2017,26(1):418-423.
 
【5】GONTIJO L C, MACHADO R, KURI S E,et al. Corrosion resistance of the layers formed on the surface of plasma-nitrided AISI 304L steel[J]. Thin Solid Films, 2006, 515(3):1093-1096.
 
【6】HOSHIYAMA Y, MIZOBATA R, MIYAKE H. Mechanical properties of austenitic stainless steel treated by active screen plasma nitriding[J]. Surface & Coatings Technology, 2016, 307(Part B):1041-1044.
 
【7】BORGIOLI F, GALVANETTO E, BACCI T. Low temperature nitriding of AISI 300 and 200 series austenitic stainless steels[J]. Vacuum, 2016, 127:51-60.
 
【8】SUN Y, BELL T. Sliding wear characteristics of low temperature plasma nitrided 316 austenitic stainless steel[J]. Wear, 1998, 218(1):34-42.
 
【9】BLAWERT C, MORDIKE B L.Nitrogen plasma immersion ion implantation for surface treatment and wear protection of austenitic stainless steel X6CrNiTi1810[J]. Surface & Coatings Technology, 1999, 116/117/118/119:352-360.
 
【10】DAHM K L, DEARNLEY P A. On the nature, properties and wear response of S-phase (nitrogen-alloyed stainless steel) coatings on AISI 316L[J]. Proceedings of the Institution of Mechanical Engineers, 2001, 214(4):181-198.
 
【11】LI C X, BELL T. Sliding wear properties of active screen plasma nitrided 316 austenitic stainless steel[J]. Wear, 2004, 256(11/12):1144-1152.
 
相关信息
   标题 相关频次
 γN相在硼酸缓冲溶液中的腐蚀与钝化性能
 4
 等离子体源渗氮2Cr13马氏体不锈钢的耐磨与耐腐蚀性能
 4
 反应烧结碳化硅陶瓷材料的摩擦磨损性能
 3
 氧化铝颗粒增强铜基复合材料的摩擦磨损性能
 3
 氧化锌晶须填充尼龙1010复合材料的摩擦磨损性能
 3
 液相烧结碳化硅陶瓷的摩擦磨损行为
 3
 06Cr17Ni5N奥氏体不锈钢热轧板表面脱皮原因
 2
 0Cr18Ni9钢表面等离子铌合金化层的显微组织和摩擦磨损性能
 2
 18-8奥氏体不锈钢焊接接头晶间腐蚀的评定及控制
 2
 1Cr18Ni9Ti不锈钢脉冲超窄间隙焊接头的组织及耐腐蚀性能
 2
 304L/ER316L奥氏体不锈钢焊接板的点蚀行为
 2
 304L不锈钢在高温NaOH溶液中的应力腐蚀开裂行为
 2
 304奥氏体不锈钢焊缝低温热老化后的显微组织与力学性能
 2
 304奥氏体不锈钢护栏断裂失效分析
 2
 304不锈钢密封垫片开裂原因分析
 2
 310S和AL-6XN不锈钢在熔融MgCl2中的腐蚀行为
 2
 316L不锈钢焊缝的点蚀行为
 2
 316L不锈钢在普光净化厂含氯胺液中的应力腐蚀开裂
 2
 4种成分车轮钢与U71Mn钢轨钢间的磨损行为
 2
 Al2O3-13%TiO2/铁基非晶合金复合涂层的室温摩擦磨损行为
 2
 AlN含量对AlN/Zr-Cu复合材料性能的影响
 2
 CeO2添加量对铁基粉末冶金材料表面渗硼层组织与摩擦磨损性能的影响
 2
 EPR核电站主管道的超声相控阵检测
 2
 H13钢氮化前后表面磁控溅射CrAlN薄膜的摩擦磨损性能
 2
 PTFE/7075铝合金镶嵌型自润滑材料的摩擦学行为
 2
 SiC和WS2颗粒协同改性铜/聚酰亚胺树脂基复合材料的摩擦磨损性能
 2
 TC11钛合金表面渗锆层组织及其摩擦学性能
 2
 TiB2-B4C陶瓷刀具切削Inconel 718合金的切削性能与磨损机制
 2
 TP304H奥氏体锅炉管高温运行显微特征
 2
 WC-Al2O3复合材料与Si3N4陶瓷和YG6硬质合金配副时的摩擦磨损行为
 2