搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
核反应堆用奥氏体不锈钢辐照损伤的研究进展
          
Research Progress on Irradiation Damage of Austenitic Stainless Steel for Nuclear Reactor

摘    要
总结了核反应堆中应用非常广泛的奥氏体不锈钢的不同辐照损伤行为,包括辐照诱导显微结构变化、辐照诱导偏析、辐照诱导析出、辐照诱导应力腐蚀断裂等;从试验方法和奥氏体不锈钢种类等方面提出了核反应堆用奥氏体不锈钢辐照损伤的研究方向。
标    签 奥氏体不锈钢   核反应堆   辐照损伤   austenitic stainless steel   nuclear reactor   irradiation damage  
 
Abstract
Different irradiation damage behavior, including irradiation induced change of microstructure, irradiation induced segregation, irradiation induced precipitation and irradiation induced stress corrosion cracking of austenitic stainless steels commonly used in nuclear reactors is summarized. The research direction of irradiation damage of austenitic stainless steels for nuclear reactors is proposed from the aspects of test methods and category of austenitic stainless steel.

中图分类号 TG142.1   DOI 10.11973/jxgccl201807001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国际热核聚变实验堆(ITER)计划专项项目(2014GB121001B);国家自然科学基金面上项目(51574101)

收稿日期 2017/5/10

修改稿日期 2018/6/8

网络出版日期

作者单位点击查看

备注郝予琛(1996-),男,四川成都人,本科生

引用该论文: HAO Yuchen,ZHAO Meiling,LUO Laima. Research Progress on Irradiation Damage of Austenitic Stainless Steel for Nuclear Reactor[J]. Materials for mechancial engineering, 2018, 42(7): 1~5
郝予琛,赵美玲,罗来马. 核反应堆用奥氏体不锈钢辐照损伤的研究进展[J]. 机械工程材料, 2018, 42(7): 1~5


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】傅庆云,张迎新,刘伟.世界主要能源国家能源形势[M].北京:中国大地出版社,2004.
 
【2】AGENCYI A E. Energy, electricity and nuclear power estimates for the period up to 2050[M]. Vienna:IAEA, 1996.
 
【3】ZINKLE S J, BUSBY J T. Structural materials for fission & fusion energy[J]. Materials Today, 2009, 12(11):12-19.
 
【4】严彪.不锈钢手册[M]. 北京:化学工业出版社, 2009.
 
【5】ZINKLE S J. Fusion materials science:Overview of challenges and recent progress[J]. Physics of Plasmas, 2005, 12(5):19.
 
【6】BURTON M. Radiation damage in solids[M]. Massachusetts:Academic Press, 1962.
 
【7】YOO M H, STIEGLER J O. Point defect interactions and growth of dislocation loops[J]. Journal of Nuclear Materials, 1978, 69/70(78):813-815.
 
【8】LEE E H, HUNN J D, BYUN T S, et al. Effects of helium on radiation-induced defect microstructure in austenitic stainless steel[J]. Journal of Nuclear Materials, 2000, 280(1):18-24.
 
【9】YANG Z, SAKAGUCHI N, WATANABE S, et al. Dislocation loop formation and growth under in situ laser and/or electron irradiation[J]. Scientific Reports,2011,1(12):190.
 
【10】SINGH B N, GOLUBOV S I, TRINKAUS H. Review:Evolution of stacking fault tetrahedra and its role in defect accumulation under cascade damage conditions[J]. Journal of Nuclear Materials, 2004, 328(2):77-87.
 
【11】UBERUAGA B P, HOAGLAND R G, VOTER A F, et al. Direct transformation of vacancy voids to stacking fault tetrahedra[J]. Physical Review Letters, 2007, 99(13):135501.
 
【12】HORIKI M, KIRITANI M. Microstructural evolution in low-dose neutron-irradiated Fe16Ni15Cr alloy[J]. Journal of Nuclear Materials, 1994, 212(5):246-251.
 
【13】SCHÄUBLIN R, YAO Z, BALUC N, et al. Irradiation-induced stacking fault tetrahedra in fcc metals[J]. Philosophical Magazine, 2005, 85(4/5/6/7):769-777.
 
【14】ALLEN T R, COLE J I, TRYBUS C L, et al. The effect of dose rate on the response of austenitic stainless steels to neutron radiation[J]. Journal of Nuclear Materials, 2006, 348(1):148-164.
 
【15】SHENG Z. Relationship between irradiation swelling behaviour of alloys and their valence electron structure[M]//China Nuclear Information Centre. China Nuclear Science and Technology Report. Beijing:Atomic Energy Press, 1998.
 
【16】QIAN J, SUN J. Nucleation and swelling in electron irradiated austenitic stainless steels in temperature range 400-720℃[M]//China Nuclear Information Centre. China Nuclear Science and Technology Report. Beijing:Atomic Energy Press, 1994.
 
【17】GARNER F A, TOLOCZKO M B, SENCER B H. Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure[J]. Journal of Nuclear Materials, 2000, 276(1):123-142.
 
【18】YOSHⅡE T, CAO X Z, SATO K, et al. Point defect processes during incubation period of void growth in austenitic stainless steels, Ti-modified 316SS[J]. Journal of Nuclear Materials, 2011, 417(1/2/3):968-971.
 
【19】YOSHⅡE T, SATO K, CAO X, et al. Defect structures before steady-state void growth in austenitic stainless steels[J]. Journal of Nuclear Materials,2012,429(1/2/3):185-189.
 
【20】VETERNIKOVA J S, SLUGEN V, SOJAK S, et al. Application of slow positron beam for study of commercial oxide-dispersion-strengthened steels[J]. Journal of Nuclear Materials, 2014, 450(1/2/3):99-103.
 
【21】YURECHKO M, SCHROER C, SKRYPNIK A, et al. Creep-to-rupture of 12Cr-and 14Cr-ODS steels in oxygen-controlled lead and air at 650℃[J]. Journal of Nuclear Materials, 2014, 450(1/2/3):88-98.
 
【22】OKA H, WATANABE M, KINOSHITA H, et al. In situ observation of damage structure in ODS austenitic steel during electron irradiation[J]. Journal of Nuclear Materials, 2011, 417(1/2/3):279-282.
 
【23】ALLEN T R, COLE J I, GAN J, et al. Swelling and radiation-induced segregation in austentic alloys[J]. Journal of Nuclear Materials, 2005, 342(1):90-100.
 
【24】JIAO Z, WAS G S. Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels[J]. Acta Materialia, 2011, 59(3):1220-1238.
 
【25】ETIENNE A, RADIGUET B, CUNNINGHAM N J, et al. Atomic scale investigation of radiation-induced segregation in austenitic stainless steels[J]. Journal of Nuclear Materials, 2010, 406(2):244-250.
 
【26】SCHIBLI R, SCHÄUBLIN R. On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels-A literature review[J]. Journal of Nuclear Materials, 2013, 442(1/2/3):761-767.
 
【27】WAS G S, WHARRY J P, FRISBIE B, et al. Assessment of radiation-induced segregation mechanisms in austenitic and ferritic-martensitic alloys[J]. Journal of Nuclear Materials, 2011, 411(1):41-50.
 
【28】ALLEN T R, WAS G S. Modeling radiation-induced segregation in austenitic Fe-Cr-Ni alloys[J]. Acta Materialia, 1998, 46(10):3679-3691.
 
【29】KENIK E A, BUSBY J T. Radiation-induced degradation of stainless steel light water reactor internals[J]. Materials Science & Engineering:R, 2012, 73(7/8):67-83.
 
【30】NOLFI F V. Phase transformations during irradiation[M]. London:Applied Science Publishers, 1983.
 
【31】SIMONEN E P, BRUEMMER S M. Radiation effects on environmental cracking of stainless steels[J]. JOM, 1998, 50(12):52-55.
 
【32】WATANABE S, TAKAMATSU Y, SAKAGUCHI N, et al. Sink effect of grain boundary on radiation-induced segregation in austenitic stainless steel[J]. Journal of Nuclear Materials, 2000, 283/284/285/286/287(4):152-156.
 
【33】KAI J J, CHEN F R, DUH T S. Effects of grain boundary misorientation on radiation-induced solute segregation in proton irradiated 304 stainless steels[J]. Materials Transactions, 2004, 45(1):40-50.
 
【34】FIELD K G, BARNARD L M, PARISH C M, et al. Dependence on grain boundary structure of radiation induced segregation in a 9 wt.% Cr model ferritic/martensitic steel[J]. Journal of Nuclear Materials,2013,435(1/2/3):172-180.
 
【35】AHMEDABADI P, KAIN V, ARORA K, et al. Radiation-induced segregation in austenitic stainless steel type 304:Effect of high fraction of twin boundaries[J]. Materials Science & Engineering:A, 2011, 528(25/26):7541-7551.
 
【36】KAIN V, WATANABE Y. Development of a single loop EPR test method and its relation to grain boundary microchemistry for alloy 600[J]. Journal of Nuclear Materials, 2002, 302(1):49-59.
 
【37】WAS G S. Fundamentals of radiation materials science[M]. Heidelberg:Springer, 2007.
 
【38】BRUEMMER S M, SIMONEN E P, SCOTT P M, et al. Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals[J]. Journal of Nuclear Materials, 1999, 274(3):299-314.
 
【39】EDWARDS D J, SIMONEN E P, GARNER F A, et al. Influence of irradiation temperature and dose gradients on the microstructural evolution in neutron-irradiated 316SS[J]. Journal of Nuclear Materials, 2003, 317(1):32-45.
 
【40】ZINKLE S J, MAZIASZ P J, STOLLER R E. Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel[J]. Journal of Nuclear Materials, 1993, 206(2/3):266-286.
 
【41】WAS G S, BRUEMMER S M. Effects of irradiation on intergranular stress corrosion cracking[J]. Journal of Nuclear Materials, 1994, 216(10):326-347.
 
【42】LEE E H, MAZIASZ P J, ROWCLIFFE A F. Structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments[M]. Tennessee:Oak Ridge National Lab, 1979.
 
【43】LU Z, FAULKNER R G S, WAS G S, et al. Irradiation-induced grain boundary chromium microchemistry in high alloy ferritic steels[J]. Scripta Materialia, 2008, 58(10):878-881.
 
【44】JIN S, GUO L, LUO F, et al. Ion irradiation-induced precipitation of Cr23C6 at dislocation loops in austenitic steel[J]. Scripta Materialia, 2013, 68(2):138-141.
 
【45】DAN E, SIMONEN E, BRUEMMER S, et al. Microstructural evolution in neutron-irradiated stainless steels:Comparison of LWR and fast-reactor irradiations[C]//International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors. Colorado:Wiley, 2012:419-428.
 
【46】CHOPRA O K, RAO A S. A review of irradiation effects on LWR core internal materials-Neutron embrittlement, void swelling, and irradiation creep[J]. Journal of Nuclear Materials, 2011, 412(1):195-208.
 
【47】GARNIER J, BRÉCHET Y, DELNONDEDIEU M, et al. Irradiation creep of SA 304L and CW 316 stainless steels:Mechanical behaviour and microstructural aspects. Part I:Experimental results[J]. Journal of Nuclear Materials, 2011, 413(2):63-69.
 
【48】RAO A S. Degradation of austenitic stainless steel (SS) light water ractor (LWR) core internals due to neutron irradiation[J]. Nuclear Engineering & Design, 2014, 269(4):78-82.
 
【49】STEPHENSON K J, WAS G S. Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water[J]. Journal of Nuclear Materials, 2014, 444(1/2/3):331-341.
 
相关信息
   标题 相关频次
 06Cr17Ni5N奥氏体不锈钢热轧板表面脱皮原因
 2
 0Cr18Ni9钢表面等离子铌合金化层的显微组织和摩擦磨损性能
 2
 18-8奥氏体不锈钢焊接接头晶间腐蚀的评定及控制
 2
 1Cr18Ni9Ti不锈钢脉冲超窄间隙焊接头的组织及耐腐蚀性能
 2
 304L/ER316L奥氏体不锈钢焊接板的点蚀行为
 2
 304L不锈钢在高温NaOH溶液中的应力腐蚀开裂行为
 2
 304奥氏体不锈钢焊缝低温热老化后的显微组织与力学性能
 2
 304奥氏体不锈钢护栏断裂失效分析
 2
 304不锈钢密封垫片开裂原因分析
 2
 310S和AL-6XN不锈钢在熔融MgCl2中的腐蚀行为
 2
 316L不锈钢焊缝的点蚀行为
 2
 316L不锈钢在普光净化厂含氯胺液中的应力腐蚀开裂
 2
 45钢传动轴断裂原因
 2
 EPR核电站主管道的超声相控阵检测
 2
 TP304H奥氏体锅炉管高温运行显微特征
 2
 Z6CNT18-10奥氏体不锈钢扩散管在蒸汽疏水环境中的疲劳开裂特征
 2
 奥氏体不锈钢AL-6XN在超临界水中的腐蚀
 2
 奥氏体不锈钢Cr17Mn6Ni4Cu2N铸坯壳层和心部的组织及热塑性
 2
 奥氏体不锈钢点蚀缺陷的相控阵超声检测
 2
 奥氏体不锈钢对接焊接头对比试块的制作及应用
 2
 奥氏体不锈钢法兰开裂原因分析
 2
 奥氏体不锈钢封头的形变马氏体含量检测与影响因素
 2
 奥氏体不锈钢管道环焊缝的超声相控阵检测
 2
 奥氏体不锈钢管对接焊缝的相控阵超声检测
 2
 奥氏体不锈钢焊缝的超声波检测方法研究
 2
 奥氏体不锈钢焊缝的二维距离-波幅曲线检测方法
 2
 奥氏体不锈钢焊缝中δ铁素体含量测量方法对比
 2
 奥氏体不锈钢厚壁对接焊缝的超声相控阵CIVA仿真与试验
 2
 奥氏体不锈钢换热器管的涡流检测
 2
 奥氏体不锈钢里氏硬度、维氏硬度及强度之间的换算关系
 2