搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
纳米MnO2的制备及显微结构和电化学性能
          
Preparation, Microstructure and Electrochemical Performance of Nano-Sized MnO2

摘    要
将KMnO4负载在介孔二氧化硅KIT-6模板上,在不同温度(400~700℃)煅烧制备纳米MnO2,研究了不同煅烧温度下纳米MnO2的显微结构和电化学性能。结果表明:当煅烧温度为400℃时,制备得到的纳米MnO2只由具有层状结构的δ-MnO2组成,当煅烧温度升高至500℃时,纳米MnO2由具有层状结构的δ-MnO2和少量具有隧道结构的α-MnO2组成,当煅烧温度为600,700℃时,纳米MnO2均由具有隧道结构的α-MnO2组成,且α-MnO2分别呈有序介孔形貌和棒状形貌;具有隧道结构的α-MnO2的循环稳定性优于具有层状结构δ-MnO2的,在100 mA·g-1电流密度下经50次循环充放电后仍具有100 mAh·g-1以上的放电容量。
标    签 纳米MnO2   介孔   电化学性能   α-MnO2   δ-MnO2   nano-sized MnO2   mesoporous   electrochemical performance   α-MnO2   δ-MnO2  
 
Abstract
Nano-sized MnO2 was synthesized by loading KMnO4 on a mesoporous silica KIT-6 template and calcination at different temperatures (400-700℃). The microstructure and electrochemical performance of nano-sized MnO2 at different calination temperatures were studied. The results show that the prepared nano-sized MnO2 was composed of δ-MnO2 with layered structure when calcined at 400℃, δ-MnO2 with layered structure and a small amount of α-MnO2 with tunnel structure when calcined at 500℃, α-MnO2 with tunnel structure which presented ordered mesoporous morphology and rod shape morphology, respectively, when calcined at 600℃ and 700℃. The α-MnO2 with tunnel structure showed a better cycling stability than that of δ-MnO2 with layered structure, and had a discharge capacity more than 100 mAh·g-1 after 50 cycles of charge-discharge at a current density of 100 mA·g-1.

中图分类号 TQ127.1   DOI 10.11973/jxgccl201807006

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目

收稿日期 2018/4/2

修改稿日期 2018/6/12

网络出版日期

作者单位点击查看

备注汤慧利(1980-),女,湖北襄阳人,工程师,博士

引用该论文: TANG Huili,REN Yu. Preparation, Microstructure and Electrochemical Performance of Nano-Sized MnO2[J]. Materials for mechancial engineering, 2018, 42(7): 28~31
汤慧利,任瑜. 纳米MnO2的制备及显微结构和电化学性能[J]. 机械工程材料, 2018, 42(7): 28~31


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】SUIB S L. Zeolitic and layered materials[J]. Chemical Reviews, 1993, 93(2):803-826.
 
【2】TIEMANN M. Porous metal oxides as gas sensors[J]. Chemistry-A:European Journal, 2007, 13(30):8376-8388.
 
【3】KONDO J N, DOMEN K. Crystallization of mesoporous metal oxides[J]. Chemistry of Materials,2008,20(3):835-847.
 
【4】REN Y, MA Z, BRUCE P G. Ordered mesoporous metal oxides:Synthesis and applications[J]. Chemical Society Reviews, 2012, 41(14):4909-4927.
 
【5】MA Z, ZHOU B, REN Y. Crystalline mesoporous transition metal oxides:Hard-templating synthesis and application in environmental catalysis[J]. Frontiers of Environmental Science & Engineering, 2013,7(3):341-355.
 
【6】SUIB S L, SON Y C, MAKWANA V D, et al. Synthesis of porous metal oxide nanomaterials[C]//25th National Meeting of the American-Chemical-Society. Louisiana:American Chemical Society, 2003.
 
【7】FENG Q, KANOH H, OOI K. Manganese oxide porous crystals[J]. Journal of Materials Chemistry,1999,9(2):319-333.
 
【8】SUIB S L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials[J]. Accounts of Chemical Research, 2008, 41(4):479-487.
 
【9】TIAN Z R, TONG W, WANG J Y, et al. Manganese oxide mesoporous structures:Mixed-valent semiconducting catalysts[J]. Science, 1997, 276(5314):926-930.
 
【10】REN Y, MA Z, MORRIS R E, et al. A solid with a hierarchical tetramodal micro-meso-macro pore size distribution[J]. Nature Communications, 2013, 4(3):2015.
 
【11】JOHNSON C S, DEES D W, MANSUETTO M F, et al. Structural and electrochemical studies of alpha-manganese dioxide (α-MnO2)[J]. Energy Storage,1996,68(2):570-577.
 
【12】KIM S H, KIM S J, OH S M. Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations[J]. Chemistry of Materials, 1999, 11(3):557-563.
 
【13】KLEITZ F, CHOI S H, RYOO R. Cubic Ia3d large mesoporous silica:Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes[J]. Chemical Communications, 2003, 9(17):2136-2137.
 
【14】GOFF P L, BAFFIER N, BACH S, et al. Chemical lithium insertion into sol-gel lamellar manganese dioxide MnO1.85·nH2O[J].Journal of Materials Chemistry,1994,4(1):133-137.
 
【15】BOPPANA V B R, YUSUF S, HUTCHINGS G S, et al. Nanostructured alkaline-cation-containing δ-MnO2 for photocatalytic water oxidation[J]. Advanced Functional Materials, 2012, 23(7):878-884.
 
【16】JIAO F, BAO J L, HILL A H, et al. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries[J]. Angewandte Chemie, 2008, 120(50):9857-9862.
 
【17】REN Y, MA Z, BRUCE P G. Ordered mesoporous NiCoMnO4:Synthesis and application in energy storage and catalytic decomposition of N2O[J]. Journal of Materials Chemistry, 2012, 22(30):15121-15127.
 
【18】JIAO F, SHAJU K M, BRUCE P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction[J]. Angewandte Chemie, 2005, 117(40):6708-6711.
 
相关信息
   标题 相关频次
 有序介孔氧化铜的制备及表征
 5
 Al-Zn-In-Si牺牲阳极材料的电化学性能
 2
 Mg-Zn-Cu系合金作为镁电池负极材料的性能
 2
 TiNi合金表面钼合金层的物相与性能
 2
 超级13Cr油管钢在含Cl-溶液中的腐蚀行为及其表面腐蚀膜的电化学特性
 2
 沉淀法制备Co(OH)2及其电化学性能
 2
 电解液温度对铝阳极合金电化学性能的影响
 2
 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响
 2
 反应堆一回路结构材料与去污液的相容性
 2
 沸石咪唑酯骨架衍生碳基复合材料的结构及其超级电容器的性能
 2
 钴掺杂锰氧化物水系锌离子电池正极材料的制备与电化学性能
 2
 合金元素Mn对铝合金阳极组织与性能的影响
 2
 核电厂鼓型滤网牺牲阳极溶解不足的原因
 2
 激光选区熔化成形Inconel718合金的显微组织以及电化学和摩擦学性能
 2
 简单包覆改性LiMn2O4正极材料在高温下的电化学性能
 2
 均匀化退火对Mg-6Al-5Pb-0.6Ce镁阳极组织和性能的影响
 2
 锂离子电池负极用一维ZnMn2O4纳米束材料的制备及电化学性能
 2
 某核电厂滤网用铝合金牺牲阳极的失效原因
 2
 水热法制备介孔Ag3VO4粉体及其光致发光性能
 2
 铜表面聚合物刷的制备及其电化学性能
 2
 微量硅对Al-In-Mg-Sn阳极合金电化学性能的影响
 2
 牺牲阳极截面形状对其服役性能的影响
 2
 锌合金牺牲阳极海水干湿交替条件下的电化学性能研究
 2
 氧化亚锰电极材料的制备及其超电容性能
 2
 元素镓、锡、铋对牺牲阳极电化学性能的影响
 2
 轧制压下量对Fe-8Al合金板材耐蚀性的影响
 2
  朱美芳院士:把碳纤维穿在身上
 1
 5083铝壳艇外加电流阴极保护系统研制
 1
 940不锈钢在含石英砂3.5%氯化钠溶液中的腐蚀磨损
 1
 Al0.3CoCrFeNi纳米晶高熵合金在碱性溶液中的电化学性能
 1