搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
奥氏体不锈钢低温表面渗碳技术的研究进展
          
Research Progress on Low Temperature Surface Carburization Technique of Austenite Stainless Steel

摘    要
从低温表面渗碳技术的分类和发展以及低温表面渗碳处理对不锈钢表面组织、力学性能、耐磨性能、耐腐蚀性能、抗氢脆性能的影响等方面对奥氏体不锈钢低温表面渗碳技术进行了综述,对奥氏体不锈钢表面低温渗碳技术存在的问题及未来的研究方向进行了探讨。
标    签 奥氏体不锈钢   低温表面渗碳   渗碳层   表面强化   性能   austenite stainless steel   low temperature surface carburization   carburized layer   surface strengthening   property  
 
Abstract
Low temperature surface carburization of austenite stainless steel is reviewed in terms of the classification and development of low temperature surface carburization technique, and the effects of low temperature surface carburization treatment on the surface microstructure, the mechanical properties, wear resistance, corrosion resistance and hydrogen embrittlement resistance of the stainless steel. The problems and the research direction in future of the low temperature surface carburization technique of austenite stainless steel are also discussed.

中图分类号 TG156.8   DOI 10.11973/jxgccl201810001

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家自然科学基金资助项目(51475224);江苏省高校自然科学研究重大项目(14KJA470002)

收稿日期 2017/8/11

修改稿日期 2018/9/12

网络出版日期

作者单位点击查看

备注姜勇(1974-),男,山东乳山人,副教授,博士

引用该论文: JIANG Yong,LI Yang,CHEN Yefeng,GONG Jianming. Research Progress on Low Temperature Surface Carburization Technique of Austenite Stainless Steel[J]. Materials for mechancial engineering, 2018, 42(10): 1~7
姜勇,李洋,陈野风,巩建鸣. 奥氏体不锈钢低温表面渗碳技术的研究进展[J]. 机械工程材料, 2018, 42(10): 1~7


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】BADDOO N R. Stainless steel in construction:A review of research, applications, challenges and opportunities[J]. Journal of Constructional Steel Research, 2008, 64(11):1199-1206.
 
【2】张少堂. 钢铁材料手册第五卷[M]. 北京:中国标准出版社, 2001.
 
【3】凤仪. 金属材料学[M]. 北京:国防工业出版社, 2009.
 
【4】MÉSZÁROS L, KÉLDOR M, HIDASI B, et al. Micromagnetic and Mössbauer spectroscopic investigation of strain-induced martensite in austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 1996, 5(4):538-542.
 
【5】韩豫, 陈学东, 刘全坤, 等. 奥氏体不锈钢应变强化工艺及性能研究[J]. 机械工程学报, 2012, 48(2):87-92.
 
【6】朱有利, 王燕礼, 边飞龙, 等. 金属材料超声表面强化技术的研究与应用进展[J]. 机械工程学报, 2014, 50(20):35-45.
 
【7】LIU G, LU J, LU K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science and Engineering:A, 2000, 286(1):91-95.
 
【8】吴炜, 梁乃刚, 虞钢,等. 脉冲激光表面强化数值模拟及热物性参量影响[J]. 中国激光, 2005, 32(5):707-712.
 
【9】张可敏. 医用金属材料的强流脉冲电子束表面改性研究[D]. 大连:大连理工大学, 2006.
 
【10】CIGADA A, MAZZA B, PEDEFERRI P, et al. Stress corrosion cracking of cold-worked austenitic stainless steels[J]. Corrosion Science, 1982, 22(6):559-578.
 
【11】KAMIDE H, TANAKA Y, FUJITSUKA K. Effect of carbon content on dissolution rate of α prime martensite and 304 stainless steel in a H2SO4-NaCl solution[J]. Journal of the Japan Institute of Metals, 1994, 58(12):1414-1419.
 
【12】BELL T. Surface engineering of austenitic stainless steel[J]. Surface Engineering, 2002, 18(6):415-422.
 
【13】朱云峰, 潘邻, 张良界, 等. 渗碳处理对奥氏体不锈钢耐蚀性的影响及低温耐蚀强化技术[C]//湖北省第十一届热处理学术年会论文集. 武汉:[出版者不详], 2011:1-9.
 
【14】BALLA V K, DAS M, BOSE S, et al. Laser surface modification of 316L stainless steel with bioactive hydroxyapatite[J]. Materials Science and Engineering:C, 2013, 33(8):4594-4598.
 
【15】LIU W J, BRIMACOMBE J K, HAWBOLT E B. Influence of composition on the diffusivity of carbon in steels:I. Non-alloyed austenite[J]. Acta Metallurgica et Materialia, 1991, 39(10):2373-2380.
 
【16】CAO Y, ERNST F, MICHAL G M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature[J]. Acta Materialia, 2003, 51(14):4171-4181.
 
【17】SUN Y, BELL T. Dry sliding wear resistance of low temperature plasma carburised austenitic stainless steel[J]. Wear, 2002, 253(5/6):689-693.
 
【18】QU J, BLAU P J, ZHANG L G, et al. Effects of multiple treatments of low-temperature colossal supersaturation on tribological characteristics of austenitic stainless steels[J]. Wear, 2008, 265(11/12):1909-1913.
 
【19】COLLINS S R, HEUER A H, SIKKA V K. Low temperature surface carburization of stainless steels[R/OL].(2007-12-07)[2017-08-11]. https://www.osti.gov/biblio/920895.
 
【20】HEUER A H, KAHN H, ERNST F, et al. Enhanced corrosion resistance of interstitially hardened stainless steel:Implications of a critical passive layer thickness for breakdown[J]. Acta Materialia, 2012, 60(2):716-725.
 
【21】FACCOLI M, CORNACCHIA G, ROBERTI R, et al. Effect of Kolsterising treatment on surface properties of a duplex stainless steel[J]. La Metallurgia Italiana, 2012, 4:13-18.
 
【22】VAN DER JAGT R H. Kolsterising-Surface hardening of austenitic and duplex stainless steels without loss of corrosion resistance[J]. Heat Treatment of Metals (UK), 2000, 27(3):62-65.
 
【23】HOLCOMB W F. Carburization of type 304 stainless steel in liquid sodium[J]. Nuclear Engineering and Design, 1967, 6(3):264-272.
 
【24】ANDERSON W J, SNEESBY G V. Carburization of austenitic stainless steel in liquid sodium[R].[S.l.]:[s.n.], 1960.
 
【25】LITTON F B, MORRIS A E. Carburization of type 316L stainless steel in static sodium[J]. Journal of the Less Common Metals, 1970, 22(1):71-82.
 
【26】SNYDER R B, NATESAN K, KASSNER T F. Kinetics of the carburization-decarburization process of austenitic stainless steels in sodium[J]. Journal of Nuclear Materials, 1974, 50(3):259-274.
 
【27】KOLSTER B H. Mechanism of Fe and Cr transport by liquid sodium in non-isothermal loop systems[J]. Journal of Nuclear Materials, 1975, 55(2):155-168.
 
【28】KOLSTER B H, BOS L. Corrosion, transport, and deposition of stainless steel in liquid sodium[C]//International Conference on Liquid Metal Technology in Energy Production Proceedings.[S.l.]:[s.n.], 1976:368-377.
 
【29】KOLSTER B H. Influence of sodium conditions on the rate for dissolution and metal/oxygen reaction of AISI 316 in liquid sodium[C]//International Conference on Liquid Metal Technology in Energy Production Proceedings. Richland, WA:[s.n.], 1980:7-53.
 
【30】徐滨士,刘世参. 中国材料工程大典第16卷:材料表面工程(上册)[M].北京:化学工业出版社, 2006.
 
【31】LI W, LI X, DONG H. Effect of tensile stress on the formation of S-phase during low-temperature plasma carburizing of 316L foil[J]. Acta Materialia, 2011, 59(14):5765-5774.
 
【32】SUN Y. Tribocorrosion behavior of low temperature plasma carburized stainless steel[J]. Surface and Coatings Technology, 2013, 228(S1):342-348.
 
【33】LEBRUN J P, MICHEL H, GANTOIS M. Nitriding by ion bombardment of 18-10 stainless steels[J]. Memoires Scientifiques de la Revue de Metallurgie, 1972, 69:727-738.
 
【34】刘伟. 奥氏体不锈钢低温离子渗碳表面硬化处理设备及工艺研究[D]. 青岛:青岛科技大学, 2009.
 
【35】VAN DER JAGT R H, KOLSTER B H, GILLHAM M W H. Anti-wear/corrosion treatment of finished austenitic stainless steel components:The Hardcor process[J]. Materials & Design, 1991, 12(1):41-46.
 
【36】ERNST F, CAO Y, MICHAL G M. Carbides in low-temperature-carburized stainless steels[J]. Acta Materialia, 2004, 52(6):1469-1477.
 
【37】AOKI K, SHIRAHATA T, TAHARA M, et al. Low temperature gas carburising for austenitic stainless steels:The NV-pionite process[M]//Stainless Steel 2000:Thermochemical Surface Engineering of Stainless Steel. London:Mancy Publishing, 2001:389-406.
 
【38】AOKI K, KITANO K. Surface hardening for austenitic stainless steels based on carbon solid solution[J]. Surface Engineering, 2002, 18(6):462-463.
 
【39】MARTIN F J, LEMIEUX E J, NEWBAUER T M, et al. Carburization-induced passivity of 316L austenitic stainless steel[J]. Electrochemical and Solid-State Letters, 2007, 10(12):76-78.
 
【40】WILLIAMS P C, COLLINS S R. Mechanical design using low-temperature carburization[J]. JOM,2008,60(12):27-30.
 
【41】SOMERS M A J, CHRISTIANSEN T L. Low temperature surface hardening of stainless steel[M]//Thermochemical Surface Engineering of Steels.[S.l.]:ASM International, 2015:557-579.
 
【42】雷明凯, 朱雪梅, 袁力江,等. 钢的等离子体基低能离子注入的传质机制[J]. 金属学报, 1999, 35(7):767-769.
 
【43】LEI M K, ZHANG Z L. Plasma source ion nitriding:A new low temperature, low-pressure nitriding approach[J]. Journal of Vacuum Science & Technology A:Vacuum Surfaces & Films, 1995, 13(6):2986-2990.
 
【44】王建青. 奥氏体不锈钢低温离子表面硬化处理工艺与应用基础研究[D]. 青岛:青岛科技大学, 2010.
 
【45】赵程, 王宇. AISI 201奥氏体不锈钢低温离子渗碳[J]. 金属热处理, 2012, 37(5):95-97.
 
【46】贺芳, 赵程, 李艳红. 不锈钢离子渗碳后表面亮化处理方法对渗层形貌和性能的影响[J].材料保护,2009,45(5):63-64.
 
【47】刘伟, 赵程, 窦百香, 等. 奥氏体不锈钢低温离子渗碳[J]. 青岛科技大学学报(自然科学版), 2009, 30(5):437-441.
 
【48】周梦飞, 王永雷, 牛强,等. 双相不锈钢表面低温离子渗碳硬化处理[J]. 青岛科技大学学报(自然科学版), 2017, 38(2):95-99.
 
【49】荣冬松, 巩建鸣, 姜勇, 等. 奥氏体金属低温超饱和气体渗碳表面强化试验装置:103323355A[P]. 2013-09-25.
 
【50】王萌. 316L奥氏体不锈钢低温表面强化技术试验研究[D]. 南京:南京工业大学, 2013.
 
【51】潘邻, 张良界, 李朋,等. 一种实现奥氏体不锈钢强化和耐蚀的低温气体渗碳方法:102828145A[P]. 2012-12-19.
 
【52】LEWIS D B, LEYLAND A, STEVENSON P R, et al. Metallurgical study of low-temperature plasma carbon diffusion treatments for stainless steels[J]. Surface & Coatings Technology, 1993, 60(1/2/3):416-423.
 
【53】LEYLAND A. Low temperature plasma diffusion treatment of stainless steels for improved wear resistance[J]. Surface & Coatings Technology, 1993, 62(93):608-617.
 
【54】BELL T. Low temperature plasma nitriding and carburising of austenitic stainless steel for combined wear, corrosion and fatigue properties[C]//Contributions of Surface Engineering to Modern Manufacturing and Remanufacturing-Proceedings of the International Conference on Surface Engineering.[S.l.]:[s.n.], 2002.
 
【55】SUN Y, CHIN L Y. Residual stress evolution and relaxation in carbon S phase layers on AISI 316 austenitic stainless steel[J]. Surface Engineering, 2002, 18(6):443-446.
 
【56】GALLO S C, DONG H. EBSD and AFM observations of the microstructural changes induced by low temperature plasma carburising on AISI 316[J]. Applied Surface Science, 2011, 258(1):608-613.
 
【57】SUN Y, LI X, BELL T. Structural characteristics of low temperature plasma carburised austenitic stainless steel[J]. Materials Science and Technology,1999,15(10):1171-1178.
 
【58】SUN Y. A hybrid low temperature surface alloying process for austenitic stainless steels[J]. Transactions of Materids and Heat Treatment, 2004, 25(5):333-336.
 
【59】FARRELL K, SPECHT E D, PANG J, et al. Characterization of a carburized surface layer on an austenitic stainless steel[J]. Journal of Nuclear Materials, 2005, 343(1/2/3):123-133.
 
【60】MICHAL G M, ERNST F, KAHN H, et al. Carbon supersaturation due to paraequilibrium carburization:Stainless steels with greatly improved mechanical properties[J]. Acta Materialia, 2006, 54(6):1597-1606.
 
【61】MARTIN F J, NATISHAN P M, LEMIEUX E J, et al. Enhanced corrosion resistance of stainless steel carburized at low temperature[J]. Metallurgical and Materials Transactions A, 2009, 40(8):1805-1810.
 
【62】STAUDER B, JACQUOT P, PRUNEL G, et al. Influence de la cémentation:Basse température sur la résistance au grippage et à l'usure des aciers inoxydables austénitiques[J]. Traitement Thermique, 2003, 349:27-30.
 
【63】AGARWAL N, KAHN H, AVISHAI A, et al. Enhanced fatigue resistance in 316L austenitic stainless steel due to low-temperature paraequilibrium carburization[J]. Acta Materialia, 2007, 55(16):5572-5580.
 
【64】TOKAJI K, KOHYAMA K, AKITA M. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing[J]. International Journal of Fatigue, 2004, 26(5):543-551.
 
【65】AKITA M, TOKAJI K. Effect of carburizing on notch fatigue behaviour in AISI 316 austenitic stainless steel[J].Surface and Coatings Technology,2006,200(20/21):6073-6078.
 
【66】CESCHINI L, MINAK G. Fatigue behaviour of low temperature carburised AISI 316L austenitic stainless steel[J]. Surface and Coatings Technology, 2008, 202(9):1778-1784.
 
【67】JIANG Y, LI Y, JIA Y F, et al. Gradient elastic-plastic properties of expanded austenite layer in 316L stainless steel[J]. Acta Metallurgica Sinica, 2018(90):1-11.
 
【68】姜勇, 李洋, 张显程,等. 低温超饱和气体渗碳对316L奥氏体不锈钢力学性能的影响[J]. 中国表面工程, 2018, 31(1):32-38.
 
【69】周阳. 低温气体渗碳对奥氏体不锈钢耐蚀性能影响及在双极板中的应用[D]. 南京:南京工业大学, 2017.
 
【70】姜勇. 奥氏体不锈钢低温气体渗碳表面强化性能及在新能源中应用的研究[D]. 南京:南京工业大学, 2017.
 
【71】SOUZA R M, IGNAT M, PINEDO C E, et al. Structure and properties of low temperature plasma carburized austenitic stainless steels[J]. Surface and Coatings Technology, 2009, 204(6/7):1102-1105.
 
【72】李洋. 奥氏体不锈钢低温气体渗碳表面强化层力学性能研究[D]. 南京:南京工业大学, 2018.
 
【73】JONES J L, KOUL M G, SCHUBBE J J. An evaluation of the corrosion and mechanical performance of interstitially surface-hardened stainless steel[J]. Journal of Materials Engineering and Performance, 2014, 23(6):2055-2066.
 
【74】NATISHAN P M, BAYLES R A, RAYNE R, et al. Interstitial hardening of type 316L stainless steel to improve corrosion resistance and mechanical properties[J]. Corrosion, 2012, 68(7):638-644.
 
【75】COLLINS S R, HEUER A H, SIKKA V K. Low temperature surface carburization of stainless steels[R]. Solon, OH:Swagelok Company, 2007.
 
【76】SUN Y. Corrosion behaviour of low temperature plasma carburised 316L stainless steel in chloride containing solutions[J]. Corrosion Science, 2010,52:2661-2670.
 
【77】TSUJIKAWA M, YOSHIDA D, YAMAUCHI N, et al. Surface material design of 316 stainless steel by combination of low temperature carburizing and nitriding[J]. Surface and Coatings Technology, 2005, 200(1/2/3/4):507-511.
 
【78】FORMOSA D, HUNGER R, SPITERI A, et al. Corrosion behaviour of carbon S-phase created on Ni-free biomedical stainless steel[J]. Surface and Coatings Technology, 2012, 206(16):3479-3487.
 
【79】BUHAGIAR J, SPITERI A, SACCO M, et al. Augmentation of crevice corrosion resistance of medical grade 316LVM stainless steel by plasma carburising[J]. Corrosion Science, 2012, 59:169-178.
 
【80】SHARGHI-MOSHTAGHIN R, KAHN H, GE Y, et al. Low-temperature carburization of the Ni-base superalloy IN718:Improvements in surface hardness and crevice corrosion resistance[J]. Metallurgical and Materials Transactions A, 2010, 41(8):2022-2032.
 
【81】MARTIN F J, LEMIEUX E, NEWBAUER T, et al. Localized corrosion resistance of LTCSS-carburized materials to seawater immersion[J]. ECS Transactions, 2007, 3(31):613-621.
 
【82】THAIWATTHANA S, LI X Y, DONG H, et al. Runner-up corrosion wear behaviour of low temperature plasma alloyed 316 austenitic stainless steel[J]. Surface Engineering, 2003, 19(3):211-216.
 
【83】CESCHINI L, CHIAVARI C, LANZONI E, et al. Low-temperature carburised AISI 316L austenitic stainless steel:Wear and corrosion behaviour[J]. Materials & Design, 2012, 38:154-160.
 
【84】LI W, ZHU X, WANG C, et al. Effect of S-phase on the hydrogen induced phase transition and hydrogen embrittlement susceptibility in AISI 304 stainless steel[J]. Materials Today:Proceedings, 2015, 2(S3):691-695.
 
【85】LI Y, LI W, ZHU X, et al. Mechanism of improved hydrogen embrittlement resistance of low-temperature plasma carburised stainless steel[J]. Surface Engineering, 2018, 34(3):189-192.
 
【86】梁涛. 低温气体渗碳表面强化后304LSS抗氢性能及机理研究[D]. 南京:南京工业大学, 2018.
 
【87】NIKAM V V, REDDY R G, COLLINS S R, et al. Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application[J]. Electrochimica Acta, 2008, 53(6):2743-2750.
 
【88】Technical plan-fuel cells[Z/OL]. https://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf.
 
【89】LI W, LI X, CHIU Y L, et al. On the thermo-mechanical stability and oxidation behavior of carbon S-phase at elevated temperature and under tensile stress[J]. Materials Science and Engineering:A, 2014, 600:90-98.
 
相关信息
   标题 相关频次
 10号钢U型换热管的泄漏原因
 6
 低温气体渗碳对形变304L不锈钢抗点蚀性能的影响
 6
 未使用316L不锈钢输送管线的失效分析
 6
 2205双相不锈钢在含溴醋酸环境中的腐蚀行为
 4
 30Cr13不锈钢循环水泵轴的失效原因
 4
 316L奥氏体不锈钢表面低温气体渗碳层的热稳定性能
 4
 醋酸回收罐进口管泄漏原因
 4
 电厂水冷壁管爆管失效的原因
 4
 高温载荷作用下20G钢的性能及显微组织演变
 4
 火电厂水冷壁管爆管原因
 4
 煤制气装置变换气分离器浮阀的失效分析
 4
 预应变对304奥氏体不锈钢低温气体渗碳的影响
 4
 蒸汽转化炉用Fe-Cr-Ni基奥氏体耐热合金的研究进展
 4
 0Cr18Ni9/20G钢异质焊接接头的耐硫化氢应力腐蚀开裂性能
 3
 650 ℃等温时效过程中P92钢沉淀相的转变规律
 3
 H2S环境中液化石油气球罐用16MnR钢的腐蚀特性
 3
 P92钢中Laves相在时效过程中的形成及粗化规律
 3
 PTA装置干燥机换热管的失效原因
 3
 采用修正θ投影法预测Cr25Ni35Nb炉管钢的蠕变性能
 3
 长期服役后铂重整反应器的高温损伤及剩余寿命
 3
 等温时效模拟研究12Cr1MoV钢在长期高温服役过程中碳化物的转变规律
 3
 电化学充氢前后304L奥氏体不锈钢的塑性对比
 3
 高温碱液浓度与温度及应变速率对316L不锈钢应力腐蚀开裂的影响
 3
 锅炉水冷壁下联箱定排管泄漏的原因
 3
 国产和进口P92耐热钢显微组织、拉伸和蠕变性能的对比
 3
 基于修正θ投影法的炉管用Cr25Ni35Nb钢蠕变寿命预测
 3
 加热炉管爆管失效分析
 3
 精对苯二甲酸生产装置中TA2螺柱的断裂原因
 3
 冷加工变形对1Cr18Ni9Ti不锈钢在含溴醋酸溶液中耐腐蚀性能的影响
 3
 氯离子杂质对304和316L奥氏体不锈钢在熔融硝酸盐中腐蚀行为的影响
 3