搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Cr2O3催化氮化制备Si3N4/SiC耐火材料及其性能
          
Properties of Si3N4/SiC Refractory Prepared by Cr2O3 Catalyzed Nitridation

摘    要
以SiC粉和硅粉为原料,原位合成的Cr2O3为催化剂,采用催化氮化法制备了Si3N4/SiC耐火材料,研究了催化剂用量及氮化温度对耐火材料物相组成、微观形貌、物理性能和力学性能的影响。结果表明:当氮化温度为1 673 K,Cr2O3含量(与硅粉质量之比,下同)为3%时,硅粉完全氮化,耐火材料主要由颗粒状SiC和晶须状α-Si3N4、β-Si3N4等组成;随着Cr2O3含量的增加,Si3N4晶须的数量增多,长度增大,耐火材料变得致密;随氮化温度的升高,耐火材料的抗折强度和耐压强度均增大,当氮化温度为1 673 K、Cr2O3含量为3%时,抗折强度和耐压强度均最大,分别为34 MPa和132 MPa。
标    签 Si3N4/SiC耐火材料   Cr2O3催化氮化   Si3N4晶须   力学性能   Si3N4/SiC refractory   Cr2O3 catalyzed nitridation   Si3N4 whisker   mechanical property  
 
Abstract
With SiC powder and silicon powder as raw materials, in-situ synthesized Cr2O3 as catalyst, Si3N4/SiC refractory was prepared by catalytic nitridation. The effects of catalyst addition amount and nitridation temperature on the phase composition, micromorphology, physical properties and mechanical properties of the refractory were investigated. The results show that when the nitridation temperature was 1 673 K and the Cr2O3 content (mass ratio of Cr2O3 to silicon powder) reached 3wt%, the silicon powder was completely nitrided; the refractory was composed of grain-like SiC, whisker-like α-Si3N4 and β-Si3N4. With increasing content of Cr2O3, the amount and length of Si3N4 whisky increased; the refractory became densification. With the rise of nitridation temperature, the flexural strength and compressive strength of the refractory increased. When the nitridation temperature was 1 673 K and the Cr2O3 content was 3wt%, the flexural strength and compressive strength reached the largest values of 34 MPa and 132 MPa, respectively.

中图分类号 TQ174   DOI 10.11973/jxgccl201810014

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目 国家自然科学基金面上项目(51672194);湖北省教育厅高等学校优秀中青年科技创新团队计划项目(T201602)

收稿日期 2017/8/9

修改稿日期 2018/3/14

网络出版日期

作者单位点击查看

备注韩磊(1987-),男,河南驻马店人,博士研究生

引用该论文: HAN Lei,ZHAO Wanguo,LI Faliang,ZHANG Jun,ZENG Yuan,ZHANG Haijun. Properties of Si3N4/SiC Refractory Prepared by Cr2O3 Catalyzed Nitridation[J]. Materials for mechancial engineering, 2018, 42(10): 72~76
韩磊,赵万国,李发亮,张俊,曾渊,张海军. Cr2O3催化氮化制备Si3N4/SiC耐火材料及其性能[J]. 机械工程材料, 2018, 42(10): 72~76


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】GAZULLA M F, GOMEZ M P, ORDUNA M, et al. Physico-chemical characterisation of silicon carbide refractories[J]. Journal of the European Ceramic Society, 2006, 26(15):3451-3458.
 
【2】YANG J F, OHJI T, SEKINO T, et al. Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite[J]. Journal of the European Ceramic Society, 2001, 21(12):2179-2183.
 
【3】RILEY F L. Silicon nitride and related materials[J]. Journal of the American Ceramic Society, 2000, 83(2):245-265.
 
【4】KLEMM H. Silicon nitride for high-temperature applications[J]. Journal of the American Ceramic Society, 2010, 93(6):1501-1522.
 
【5】PARK H, KIM H E, NⅡHARA K. Microstructure and high-temperature strength of Si3N4-SiC nanocomposite[J]. Journal of the European Ceramic Society, 1998, 18(7):907-914.
 
【6】LIU J, GU Y, LI F, et al. Catalytic nitridation preparation of high-performance Si3N4(w)-SiC composite using Fe2O3 nano-particle catalyst:Experimental and DFT studies[J]. Journal of the European Ceramic Society, 2017, 37(15):4467-4474.
 
【7】YI Z Z, XIE Z P, MA J T, et al. Study on gelcasting of silicon nitride-bonded silicon carbide refractories[J]. Materials Letters, 2002, 56(6):895-900.
 
【8】NOURBAKHSH A A, GOLESTANI-FARD F, REZAIE H R. Influence of additives on microstructural changes in nitride bonded SiC refractories[J]. Journal of the European Ceramic Society, 2006, 26(9):1737-1741.
 
【9】HIRANO T, NⅡHARA K. Microstructure and mechanical properties of Si3N4/SiC composites[J]. Materials Letters, 1995, 22(5/6):249-254.
 
【10】CHEN J, LI N, WEI Y, et al. Influence of carbon sources onnitriding process, microstructures and mechanical properties of Si3N4 bonded SiC refractories[J]. Journal of the European Ceramic Society, 2017, 37(4):1821-1829.
 
【11】阮克胜. 凝胶注模成型制备Si3N4-SiC材料[J]. 耐火材料, 2013,47(1):28-30.
 
【12】HUANG J T, HUANG Z H, ZHANG S W, et al. Si3N4-SiCp composites reinforced by in situ co-catalyzed generated Si3N4 nanofibers[J]. Journal of Nanomaterials,2014,2014:2.
 
【13】古亚军. 催化氮化法制备Si3N4(w)-SiC复合材料及其高温性能研究[D]. 武汉:武汉科技大学, 2016.
 
【14】ZHAO W, ZHANG H, LIU J, et al. Preparation of Cr2O3 nanoparticles via surfactants-modified precipitation method and their catalytic effect on nitridation of silicon powders[J].Journal of the Ceramic Society of Japan,2017,125(8):623-627.
 
相关信息
   标题 相关频次
 微波熔盐辅助硼热/碳热还原法制备ZrB2-SiC复合粉
 6
 Ca-α/β-Sialon结合刚玉复合材料的力学性能
 4
 SiC含量对ZrB2-SiC/MgO-C低碳复合耐火材料性能的影响
 4
 硅酸钠添加量对多孔硅藻土陶瓷性能的影响
 4
 06Cr19Ni10不锈钢/A283低碳钢扩散焊接接头的显微组织和力学性能
 2
 06Cr20Ni11钢埋弧焊焊缝的显微组织和性能
 2
 1 000 MW核电汽轮机空心螺栓断裂原因分析
 2
 1.25Cr0.5MoSi钢的焊接工艺评定
 2
 1060工业纯铝累积叠轧后的力学性能
 2
 1060铝在累积轧制中组织和性能的演变
 2
 10Ni5CrMoV钢MAG焊接接头的显微组织与力学性能
 2
 12 Mt/a常减压装置的典型腐蚀及防护
 2
 12Cr13钢预热处理工艺参数优化
 2
 12Cr1MoV钢过热器爆管的显微组织和力学性能
 2
 12Cr2Ni4A钢球面垫圈开裂原因
 2
 14NiCrMo10 6V与Q345E钢过渡匹配焊接接头的组织与力学性能
 2
 15Ni3CrMoV与10Ni5CrMoV异种钢对接接头的显微组织及力学性能
 2
 16Mo3钢大直径大变形量试制中频弯管的组织与性能
 2
 2 000 t水压机立柱断裂分析
 2
 2024铝合金电子束焊接接头的显微组织与力学性能
 2
 20Cr1Mo1VTiB钢制高温紧固螺栓断裂失效分析
 2
 20Cr钢与B级钢焊接接头的组织和性能
 2
 2195铝锂合金的化学铣切工艺优化
 2
 2205双相不锈钢/Q345低合金钢爆炸复合板的组织与力学性能
 2
 22Mn2SiVBS热轧无缝钢管控冷时的组织与性能
 2
 240 MPa级高强IF钢的冷轧压下率和退火温度
 2
 25Cr2MoVA钢调质规范对力学性能的影响
 2
 2GPa高压处理对铜铝合金显微组织和性能的影响
 2
 300 MW机组锁口叶片断裂原因分析
 2
 3003铝合金无缝管制备过程中的显微组织与力学性能变化
 2