搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
海藻酸钠/明胶溶液3D低温沉积成形线材的尺寸精度
          
Dimensional Accuracy of 3D Low-Temperature Deposition Manufactured Wire with Sodium Alginate/Gelatin Solution

摘    要
以海藻酸钠/明胶溶液为打印材料,采用3D低温沉积成形(LDM)技术在6℃成形环境下打印成线材,对比研究了挤出压力、溶液黏度和喷头速度对试验得到的和理论计算得到的挤出胀大率和挤出拉伸率的影响,确定了最佳打印参数,并探讨了在最佳打印参数下打印件的尺寸精度。结果表明:线材的挤出胀大率随溶液黏度的增加而减小,随挤出压力的增加而增大,挤出拉伸率随喷头速度的增加而增大;最佳打印参数为溶液黏度1.26 Pa·s、挤出压力80 kPa、喷头速度8 mm·s-1,此时线材的成形效果较好,试验值和理论计算值的相对误差最小;在最佳打印参数下,基于挤出胀大率和挤出拉伸率的理论计算结果对打印件尺寸进行调整,调整后打印出的矩形件和空心圆环实际尺寸与设计尺寸的相对误差小于5%,打印精度较高。
标    签 海藻酸钠/明胶溶液   低温沉积成形(LDM)   打印参数   挤出胀大率   挤出拉伸率   sodium alginate/gelatin solution   low-temperature deposition manufacturing (LDM)   printing parameter   extrusion swell rate   extrusion stretching rate  
 
Abstract
With sodium alginate/gelatin solution as printing material, 3D low-temperature deposition manufacturing (LDM) technique was applied to print wires in the forming environment at 6℃. The effects of extrusion pressure, solution viscosity and nozzle speed on extrusion swell rates and extrusion stretching rates obtained by experiment and theoretical calculation were studied and compared. The optimum printing parameters were obtained. The dimensional accuracy of the printed parts with the optimum printing parameters was discussed. The results show that the extrusion swell rate of the wire decreased with the solution viscosity increasing and increased with the extrusion pressure increasing; the extrusion stretching rate increased with the increase of the nozzle speed. The optimum printing parameters were listed as follows:solution viscosity of 1.26 Pa·s, extrusion pressure of 80 kPa and nozzle speed of 8 mm·s-1. With this process, the forming effect of the wire was relatively good, and the relative error between tested and theoretical values was the minimum. With the optimum printing parameters, the dimensions of printed parts were adjusted on the basis of theoretical calculation of extrusion swell rate and extrusion stretching rate. After the adjustment, the relative errors between the actual and designed size of the printed rectangular part and hollow ring were below 5%, indicating a relatively high printing accuracy.

中图分类号 TH161 TH145.4   DOI 10.11973/jxgccl201812009

 
  中国光学期刊网论文下载说明


所属栏目 新材料 新工艺

基金项目 国家自然科学基金青年项目(51305213);2016年浙江省新苗人才计划项目(R405069)

收稿日期 2017/11/30

修改稿日期 2018/11/15

网络出版日期

作者单位点击查看

备注曹武举(1990-),男,河南平顶山人,硕士研究生

引用该论文: CAO Wuju,MA Zhiyong,LIU Anbang,ZHANG Jiabin. Dimensional Accuracy of 3D Low-Temperature Deposition Manufactured Wire with Sodium Alginate/Gelatin Solution[J]. Materials for mechancial engineering, 2018, 42(12): 42~46
曹武举,马志勇,刘安邦,张家彬. 海藻酸钠/明胶溶液3D低温沉积成形线材的尺寸精度[J]. 机械工程材料, 2018, 42(12): 42~46


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】DENG J H, FU M W, CHAN W L. Size effect on material surface deformation behavior in micro-forming process[J].Materials Science and Engineering:A,2011,528(13):4799-4806.
 
【2】贺超良, 汤朝晖, 田华雨,等. 3D打印技术制备生物医用高分子材料的研究进展[J]. 高分子学报, 2013, 52(6):722-732.
 
【3】PEREIRA R F, ALMEIDA H A, BÁRTOLO P J. Biofabrication of hydrogel constructs[M]//Drug Delivery Systems:Advanced Technologies Potentially Applicable in Personalised Treatment. Dordrecht:Springer Netherlands, 2013:225-254.
 
【4】KHALIL S, SU W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs[J]. Materials Science and Engineering:C, 2007, 27:469-478.
 
【5】LI M G, TIAN X Y, CHEN X B. Modeling of flow rate, pore size, and porosity for the dispensing-based tissue scaffolds fabrication[J]. Journal of Manufacturing Science and Engineering, 2009, 131:034501.
 
【6】于永泽, 陈海萍, 胡庆夕. 生物凝胶微孔挤出胀大的有限元模拟与三维打印成形[J]. 机械工程学报, 2014, 50(19):151-157.
 
【7】王秀娟, 张坤生, 任云霞,等. 海藻酸钠凝胶特性的研究[J]. 食品工业科技, 2008(2):259-262.
 
【8】戴元坎.汽车橡胶密封条挤出成型过程的计算机模拟研究[D]. 上海:上海交通大学,2008.
 
【9】何红.聚合物加工流变学基础[M]. 北京:化学工业出版社, 2015.
 
【10】夏冰. 海藻酸钠凝胶特性研究[D]. 杭州:浙江大学,2014.
 
【11】程晋生. 海藻酸盐和明胶/海藻酸钠混合凝胶[J]. 明胶科学与技术, 2004(4):169-177.
 
【12】CHEW W C, WEEDON W H. A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates[J]. Microwave and Optical Technology Letters, 1994, 7(13):599-604.
 
【13】史铁钧, 吴德峰. 高分子流变学基础[M]. 北京:化学工业出版社, 2009.
 
【14】梁基照. 混炼胶长口型挤出胀大比的预测[J]. 合成橡胶工业, 1997(1):44-45.
 
【15】赵良知, 吴舜英. 聚合物熔体在任意长径比圆锥口模的挤出胀大唯象研究[J]. 塑料, 2005, 34(4):24-28.
 
相关信息
   标题 相关频次
无相关信息...