搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
聚氨酯基磁流变胶的剪切流变特性
          
Shear Rheological Properties of Polyurethane-Based Magnetorheological Gel

摘    要
制备了不同质量分数(50%,70%,80%)羰基铁粉的聚氨酯基磁流变胶(MRG),研究具有较宽剪切应力范围的MRG在不同磁感应强度、剪切速率、应变幅下的静态和动态剪切流变特性,并基于试验结果对Herschel-Bulkley本构模型参数进行了识别。结果表明:随着磁感应强度的增强,含质量分数80%羰基铁粉MRG的剪切应力范围最宽、磁流变效应最明显;含质量分数80%羰基铁粉MRG的屈服剪切应力随磁感应强度增强而增大,且不同磁感应强度下的动力学黏度都随着剪切速率的增大而减小;该MRG是一种具有屈服剪切应力以及剪切稀化特性的非牛顿流体,其流变特性满足Herschel-Bulkley剪切稀化模型;储能模量和损耗模量受剪切应变幅及磁感应强度的影响较大,而对频率的依赖性微弱;磁流变效应及线性黏弹性临界应变幅都随磁感应强度增强而增大;相比于剪切速率及应变幅,磁感应强度对法向应力的影响更显著。
标    签 聚氨酯基磁流变胶   剪切流变特性   磁流变效应   polyurethane-based magnetorheological gel   shear rheological behavior   megnetorheological effect  
 
Abstract
Polyurethane-based magnetorheological gels (MRG) with different mass fractions of carbonyl iron powder (50%,70%,80%) were prepared. The static and dynamic shear rheological properties of the MRG with a wide shear stress range under different magnetic induction intensities, shear rates and strain amplitudes were studied, and Herschel-Bulkley constitutive model parameters were identified based on the test results. The results show that the shear stress of MRG with 80wt% carbonyl iron powder had the widest range, and megnetorheological effect was the most obvious. The yield shear stress of MRG with 80wt% carbon iron powder increased with the magnetic induction intensity; the kinetic viscosity at different magnetic induction intensities decreased with the increase of shear rate. The MRG was a non-Newtonian fluid with yield shear stress and shear thinning characteristics, and its rheological properties satisfied Herschel-Bulkley shear thinning model. The storage or loss modulus was greatly affected by the shear strain amplitude and magnetic induction intensity, but had a weak dependence on the frequency. The megnetorheological effect and linear viscoelastic critical strain amplitude both increased with the increase of magnetic induction intensity. The effect of magnetic induction intensity on normal stress was more significant than that of shear rate and shear strain amplitude.

中图分类号 TB381 TB34   DOI 10.11973/jxgccl202001004

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 河北省教育厅青年基金资助项目(QN2018206)

收稿日期 2018/12/24

修改稿日期 2019/11/12

网络出版日期

作者单位点击查看

备注杨辉静(1978-),女,重庆人,讲师,硕士

引用该论文: YANG Huijing,CHEN Wei,CHEN Dong,ZHANG Guang. Shear Rheological Properties of Polyurethane-Based Magnetorheological Gel[J]. Materials for mechancial engineering, 2020, 44(1): 21~28
杨辉静,陈巍,陈冬,张广. 聚氨酯基磁流变胶的剪切流变特性[J]. 机械工程材料, 2020, 44(1): 21~28


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】KIM H K, KIM H S, KIM Y K. Stiffness control of magnetorheological gels for adaptive tunable vibration absorber[J]. Smart Materials and Structures, 2017, 26(1):015016.
 
【2】HU H S, WANG J, JIANG X Z, et al. Design and controllability analysis of a gun magnetorheological recoil damper[J]. Journal of Vibration & Shock, 2010, 29(2):184-188.
 
【3】BUCCHI F, FORTE P, FRENDO F, et al. A magnetorheological clutch for efficient automotive auxiliary device actuation[J]. Frattura ed Integrità Strutturale, 2012, 7(23):62-74.
 
【4】SHIGA T, OKADA A, KURAUCHI T. Magnetroviscoelastic behavior of composite gels[J]. Journal of Applied Polymer Science, 1995, 58(4):787-792.
 
【5】AN H N, SUN B, PICKEN S J, et al. Long time response of soft magnetorheological gels[J]. The Journal of Physical Chemistry B, 2012, 116(15):4702-4711.
 
【6】VENKATESWARA R P, MANIPRAKASH S, SRINIVASAN M, et al. Functional behavior of isotropic magnetorheological gels[J]. Smart Materials and Structures, 2010, 19(8):085019.
 
【7】YANG P G, YU M, FU J. Ni-coated multi-walled carbon nanotubes enhanced the magnetorheological performance of magnetorheological gel[J]. Journal of Nanoparticle Research, 2016, 18(3):61.
 
【8】SHIN B C, YOON J H, KIM Y K, et al. A feasibility study of designing a tunable vibration absorber using stiffness variable magnetorheological gel[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Busan, South Korea:AIM, 2015.
 
【9】HAJALILOU A, MAZLAN S A, ABBASI M, et al. Fabrication of spherical CoFe2O4 nanoparticles via sol-gel and hydrothermal methods and investigation of their magnetorheological characteristics[J]. RSC Advances, 2016, 6(92):89510-89522.
 
【10】JU B X, YU M, FU J, et al. Magnetic field-dependent normal force of magnetorheological gel[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11583-11589.
 
【11】AN H N, PICKEN S J, MENDES E. Direct observation of particle rearrangement during cyclic stress hardening of magnetorheological gels[J]. Soft Matter,2012,8(48):11995.
 
【12】HU B, FUCHS A, HUSEYIN S, et al. Supramolecular magnetorheological polymer gels[J]. Journal of Applied Polymer Science, 2006, 100(3):2464-2479.
 
【13】XU Y G, GONG X L, XUAN S H. Soft magnetorheological polymer gels with controllable rheological properties[J]. Smart Materials and Structures, 2013, 22(7):075029.
 
【14】YANG P G, YU M, FU J, et al. The damping behavior of magnetorheological gel based on polyurethane matrix[J]. Polymer Composites, 2017, 38(7):1248-1258.
 
【15】CHEN L, GONG X L, LI W H. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers[J]. Smart Materials and Structures, 2007,16(6):2645-2650.
 
【16】XU Y G, GONG X L, XUAN S H, et al. A high-performance magnetorheological material:Preparation, characterization and magnetic-mechanic coupling properties[J]. Soft Matter, 2011, 7(11):5246.
 
【17】MITSUMATA T, ABE N. Giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels[J]. Smart Materials and Structures, 2011, 20(12):124003.
 
【18】张广, 汪辉兴, 欧阳青, 等. 硅树脂基磁流变胶流变特性研究及Herschel-Bulkley模型参数识别[J]. 湖南大学学报(自然科学版), 2018(6):62-71.
 
【19】WILSON M J, FUCHS A, GORDANINEJAD F. Development and characterization of magnetorheological polymer gels[J]. Journal of Applied Polymer Science, 2002, 84(14):2733-2742.
 
【20】王芳芳, 廖昌荣, 周治江,等. 磁流变胶泥材料的磁控力学行为实验研究[J]. 功能材料, 2014, 45(23):23095-23100.
 
【21】秦利军, 龚兴龙, 江万权,等. 铁粉含量对明胶基磁流变胶流变性能的影响[J]. 机械工程材料, 2010, 34(5):8-11.
 
【22】刘术志, 余淼, 杨平安,等. 聚氨酯基磁流变胶磁控电阻特性研究[J]. 功能材料, 2016, 47(7):7066-7070.
 
【23】MITSUMATA T, IKEDA K, GONG J P, et al. Magnetism and compressive modulus of magnetic fluid containing gels[J]. Journal of Applied Physics, 1999, 85(12):8451-8455.
 
【24】WILSON M J, FUCHS A, GORDANINEJAD F. Development and characterization of magnetorheological polymer gels[J]. Journal of Applied Polymer Science, 2002, 84(14):2733-2742.
 
【25】RANKIN P J, HORVATH A T, KLINGENBERG D J. Magnetorheology in viscoplastic media[J]. Rheologica Acta, 1999, 38(5):471-477.
 
【26】FUCHS A, XIN M, GORDANINEJAD F, et al. Development and characterization of hydrocarbon polyol polyurethane and silicone magnetorheological polymeric gels[J]. Journal of Applied Polymer Science,2004,92(2):1176-1182.
 
【27】WEI B, GONG X L, JIANG W Q. Influence of polyurethane properties on mechanical performances of magnetorheological elastomers[J]. Journal of Applied Polymer Science, 2010, 116(2):771-778.
 
【28】ZHANG G, WANG H X, WANG J. Development and dynamic performance test of magnetorheological material for recoil of gun[J]. Applied Physics, 2018, 124(11):781.
 
相关信息
   标题 相关频次
 大口径薄壁气瓶用无缝钢管的制造工艺
 2
 一种用于超声非线性试验的压力监测夹持装置
 2
 (NH4)2SO4管线开裂失效的原因
 1
 20钢在含甲醇污水中的缓蚀剂选择及其缓蚀性能
 1
 2Cr13不锈钢在含乙酸的CO2饱和的NaCl溶液中的腐蚀行为
 1
 316L不锈钢短接过早腐蚀开裂的机制与预防
 1
 350 MW亚临界机组T91钢再热器管泄漏失效分析
 1
 BTi6431S高温钛合金盒形件超塑性成型工艺
 1
 GH4169高温合金的动态力学行为及其本构关系
 1
 H型钢空冷过程中残余热应力的有限元分析
 1
 LY12M铝合金板同步冷却热拉伸后的组织与性能
 1
 MoS2基复合润滑薄膜的制备及其摩擦性能
 1
 Q345R钢在含单质硫地层水中的腐蚀行为
 1
 TC8钛合金的动态力学性能及本构关系
 1
 半透明复合材料脉冲热像检测的有限元仿真分析
 1
 丙烯腈反应气体冷却器换热管的腐蚀失效原因
 1
 丙烯腈生产中浮头式换热器螺栓断裂失效分析
 1
 不同工艺高温固溶与时效处理后SP-700钛合金的组织与性能
 1
 不同温度淬火对45钢疲劳裂纹扩展行为的影响
 1
 川气东送管道内腐蚀调查分析
 1
 氮化温度对24Cr2Ni4MoV钢离子氮化显微组织的影响
 1
 导热油管断裂失效分析
 1
 镀锌钢管在流动地热水环境中的腐蚀与结垢
 1
 多频涡流仪的两种检测工作模式对比
 1
 高寒环境下GIS密封圈材料的选用及存在问题
 1
 高温卡具断裂分析
 1
 高效液相色谱-串联质谱法测定减肥保健食品中违禁添加药物利莫那班
 1
 环氧玻璃鳞片涂层在塔河油田的腐蚀行为
 1
 基于J-C模型的GH907高温合金动态本构关系及失效关系
 1
 基于V型缺口试样冲击性能确定1Cr17Ni2不锈钢的热处理工艺
 1