搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
不锈钢在NaCl溶液中点蚀的数值模拟
          
Numerical Simulation of Pitting Corrosion of Stainless Steel in NaCl Solution

摘    要
基于格子玻尔兹曼(LB)方法,为模拟多相多组分流动与传输、电化学反应、固液相间转化等,建了不锈钢点蚀的LB腐蚀模型。应用该模型,得到了不锈钢在点蚀全过程中点蚀坑形貌特征变化以及不同组分的含量分布情况。该模型能够清晰地说明不锈钢点蚀的反应机理,包括点蚀成核、点蚀的亚稳态过程以及点蚀的稳态过程。对比模拟结果同试验结果可以发现,腐蚀量随时间变化的趋势大致相同,这证明了该模拟方法的准确性。
标    签 格子玻尔兹曼(LB)方法   电化学反应   点蚀   结点体积法   Lattice Boltzmann (LB) method   electrochemical reaction   pitting corrosion   volume of pixel  
 
Abstract
Based on the lattice Boltzmann (LB) method, an LB corrosion model for pitting corrosion of stainless steel was established to simulate electrochemical reactions, multiphase multicomponent flow and transmission between solid and liquid phases. By using this model, the change of pitting morphology and the content distribution of different components in the whole process of pitting corrosion of stainless steel were obtained. This model could clearly explain the reaction mechanism of pitting corrosion of stainless steel, including pitting nucleation, metastable process of pitting corrosion, and steady state process of pitting corrosion. Comparing the simulation results with the test results, it could be found that the trend of the corrosion volume with time was roughly the same, which proved the accuracy of the simulation method.

中图分类号 TG171   DOI 10.11973/fsyfh-202002010

 
  中国光学期刊网论文下载说明


所属栏目 数值模拟

基金项目 国家自然基金(U1633111;51206179);中央高校基本科研业务费(3122017036;3122017040)

收稿日期 2018/7/3

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: CUI Jing,YANG Fan,YANG Tinghao,YANG Guangfeng. Numerical Simulation of Pitting Corrosion of Stainless Steel in NaCl Solution[J]. Corrosion & Protection, 2020, 41(2): 50


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】WELLS J T, JANECKY D R, TRAVIS B J. A lattice gas automata model for heterogeneous chemical reactions at mineral surfaces and in pore networks[J]. Physica D Nonlinear Phenomena, 1991, 47(1/2):115-123.
 
【2】JANECKY D R, JR W E S. Formation of massive sulfide deposits on oceanic ridge crests:Incremental reaction models for mixing between hydrothermal solutions and seawater[J]. Geochimica Et Cosmochimica Acta, 1984, 48(12):2723-2738.
 
【3】HE X Y, LI N, BYRON G. Lattice boltzmann simulation of diffusion-convection systems with surface chemical reaction[J]. Molecular Simulation, 2000, 25(3/4):145-156.
 
【4】KANG Q, ZHANG D, CHEN S, et al. Lattice Boltzmann simulation of chemical dissolution in porous media[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 65(3):036318.
 
【5】KANG Q, LICHTNER P C, VISWANATHAN H S, et al. Pore scale modeling of reactive transport involved in geologic CO2 sequestration[J]. Transport in Porous Media, 2010, 82(1):197-213.
 
【6】CHEN L, KANG Q, ROBINSON B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review E:Statistical Nonlinear & Soft Matter Physics, 2013, 87(4):043306.
 
【7】NOGUES J P, FITTS J P, CELIA M A, et al. Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks[J]. Water Resources Research, 2013, 49(9):6006-6021.
 
【8】YOON H, VALOCCHI A J, WERTH C J, et al. Pore-scale simulation of mixing-induced calcium carbonate precipitation and dissolution in a microfluidic pore network[J]. Water Resources Research, 2012, 48(2):2478-2478.
 
【9】LIU M, MOSTAGHIMI P. High-resolution pore-scale simulation of dissolution in porous media[J]. Chemical Engineering Science, 2017, 161:360-369.
 
【10】HUBER C, SHAFEI B, PARMIGIANI A. A new pore-scale model for linear and non-linear heterogeneous dissolution and precipitation[J]. Geochimica Et Cosmochimica Acta, 2014, 124(1):109-130.
 
【11】MU Y T, CHEN L, HE Y L, et al. Pore-scale modelling of dynamic interaction between SVOCs and airborne particles with lattice Boltzmann method[J]. Building & Environment, 2016, 104:152-161.
 
【12】PEDERSEN J, JETTESTUEN E, MADLAND M V, et al. A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods[J]. Advances in Water Resources, 2015, 87:68-79.
 
【13】CHEN L, KANG Q, HE Y L, et al. Mesoscopic study of the effects of gel concentration and materials on the formation of precipitation patterns[J]. Langmuir:the ACS Journal of Surfaces & Colloids, 2012, 28(32):11745-11754.
 
【14】CHEN L, LUAN H B, HE Y L, et al. Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields[J]. International Journal of Thermal Sciences, 2012, 51(4):132-144.
 
【15】ATIA A, MOHAMMEDI K. Lattice boltzmann investigation of thermal effect on convective mixing at the edge of solvent chamber in CO2-VAPEX process[J]. World Journal of Engineering, 2015, 12(4):353-362.
 
【16】CHEN L, KANG Q, MU Y, et al. A critical review of the pseudopotential multiphase lattice boltzmann model:Methods and applications[J]. International Journal of Heat & Mass Transfer, 2014, 76(6):210-236.
 
【17】CHEN L, KANG Q, TANG Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat & Mass Transfer, 2015, 85:935-949.
 
【18】MIN T, GAO Y, CHEN L, et al. Mesoscale investigation of reaction-diffusion and structure evolution during Fe-Al inhibition layer formation in hot-dip galvanizing[J]. International Journal of Heat & Mass Transfer, 2016, 92:370-380.
 
【19】KANG Q, LICHTNER P C, ZHANG D. An improved lattice boltzmann model for multicomponent reactive transport in porous media at the pore scale[J]. Water Resources Research, 2007, 43(12):2578-2584.
 
【20】MIN T, GAO Y, CHEN L, et al. Changes in porosity, permeability and surface area during rock dissolution:effects of mineralogical heterogeneity[J]. International Journal of Heat & Mass Transfer, 2016, 103:900-913.
 
【21】KANG Q, LICHTNER P C, ZHANG D. Lattice boltzmann pore-scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research Solid Earth, 2006, 111(B5):1-9.
 
【22】王杰. 不锈钢表面耐点蚀性钝化膜的研究[D]. 成都:西南交通大学,2014.
 
【23】LIU M, MOSTAGHIMI P. High-resolution pore-scale simulation of dissolution in porous media[J]. Chemical Engineering Science, 2017, 161:360-369.
 
相关信息
   标题 相关频次
 0Cr13铁素体不锈钢在FeCl3溶液中的点蚀行为
 2
 2205双相不锈钢在HCl溶液中点蚀的AFM和电化学分析
 2
 304不锈钢焊缝附近的点蚀损伤发展规律
 2
 316L不锈钢在FeCl3溶液中点蚀行为的电化学噪声检测
 2
 316L钢内衬复合管焊接接头的耐点蚀性能
 2
 3A21铝合金在乙二醇水溶液中的腐蚀行为
 2
 7075-TiB2原位铝基复合材料的腐蚀性能
 2
 Al/BN可磨耗封严涂层镶嵌气泡产生原因分析
 2
 Cl-,CO2和微量H2S共存时13Cr不锈钢的腐蚀性能
 2
 Cl-对304L不锈钢从点蚀到应力腐蚀转变行为的影响
 2
 Cl-浓度对2A12铝合金电化学行为的影响
 2
 EB104/EB202涂层对904L不锈钢的防腐蚀效果
 2
 GCr15轴承钢叶片环热处理后磁粉探伤异常的原因
 2
 GCr15轴承钢在盐酸溶液中的点蚀行为
 2
 Mg-12Gd-3Y-0.5Zr镁合金的不同疲劳行为
 2
 NiAl-31Cr-3Mo合金的低温热腐蚀性能
 2
 P110油管腐蚀穿孔原因分析
 2
 Q235钢在3种典型土壤环境中的腐蚀行为
 2
 S2O2-3对Cu-15Ni-8Sn合金在NaCl溶液中点蚀的影响
 2
 S32750双相不锈钢六角头螺栓腐蚀失效分析
 2
 SO2-4对X80管线钢在含Cl-的NaHCO3溶液中点蚀行为影响
 2
 T91钢在碱金属氯化物介质中的高温腐蚀行为
 2
 TP304不锈钢凝汽器管在不同工况下的腐蚀行为
 2
 X52钢在含H2S/CO2混合气体的三甘醇溶液中的腐蚀行为
 2
 X80管线钢在0.5 mol/L NaHCO3+0.02 mol/L 强激光与粒子束NaCl溶液中的点腐蚀性能
 2
 板式换热器泄漏原因
 2
 保温原油储罐外壁腐蚀成因及防腐蚀措施
 2
 表面喷丸对800合金点蚀性能影响
 2
 不同工艺热处理后超高强Cu-15Ni-8Sn-Zn-0.8Al-0.2Si合金的腐蚀行为
 2
 不同含硅量30Cr13系列不锈钢的腐蚀行为
 2