搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
表面增强拉曼光谱技术在食品安全检测中的应用
          
Application of Surface Enhanced Raman Spectroscopy on Food Safety Detection

摘    要
表面增强拉曼光谱是一种强有力的食品检验技术,当待测样品吸附于具有纳米量级粗糙度的金属结构表面时,样品分子的拉曼信号将得到极大的增强。该检测技术具有灵敏度高、响应迅速以及“指纹”识别等特点,在快速检测食品污染物等方面具有巨大的应用前景。该文介绍了表面增强拉曼光谱技术的发展历史、基本原理、基底分类以及联用技术,综述了该技术在重金属离子、兽药残留、农药残留、非法添加物、食源性致病微生物等方面的最新应用,最后提出了亟需解决的问题与未来的发展趋势(引用文献74篇)。
标    签 表面增强拉曼光谱   食品安全   应用   surface enhanced raman spectroscopy   food safety   application  
 
Abstract
Surface enhanced Raman spectroscopy (SERS) is a powerful food inspection technology. When the sample is adsorbed on the surface of metal structure with nanometer roughness, the Raman signal of the sample molecule will be greatly enhanced.The detection technology has the characteristics of high sensitivity, rapid response and "fingerprint" identification, and has great application prospects in the rapid detection of food contaminants. In this paper, the development history, basic principle, basement classification and combined technology of SERS are introduced. The latest applications of SERS in heavy metal ions, veterinary drug residues, pesticide residues, illegal additives, food-borne pathogenic microorganisms and other aspects are summarized.Furthermore, the urgent problems and development trends are put forward (74 ref. cited).

中图分类号 O65   DOI 10.11973/lhjy-hx202004022

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目

收稿日期 2019/5/6

修改稿日期

网络出版日期

作者单位点击查看


备注梁营芳,硕士研究生,主要从事SERS技术及其在食品安全检测方面的应用研究工作

引用该论文: LIANG Yingfang,ZHOU Hualan,WANG Yan,WANG Feng. Application of Surface Enhanced Raman Spectroscopy on Food Safety Detection[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2020, 56(4): 487~496
梁营芳,周化岚,王燕,王锋. 表面增强拉曼光谱技术在食品安全检测中的应用[J]. 理化检验-化学分册, 2020, 56(4): 487~496


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】KUKUSAMUDE C, BURAKHAM R, CHAILAPAKUL O, et al. High performance liquid chromatography for the simultaneous analysis of penicillin residues in beef and milk using ion-paired extraction and binary water-acetonitrile mixture[J]. Talanta, 2012,92:38-44.
 
【2】CALBIANI F, CARERI M, ELVIRI L, et al. Development and in-house validation of a liquid chromatography-electrospray-tandem mass spectrometry method for the simultaneous determination of Sudan Ⅰ, Sudan Ⅱ, Sudan Ⅲ and Sudan Ⅳ in hot chilli products[J]. Journal of Chromatography A, 2004,1042(1/2):123-130.
 
【3】SAMSONOVA J V, OSIPOV A P, KONDAKOV S E. Strip-dried whole milk sampling technique for progesterone detection in cows by ELISA[J]. Talanta, 2017,175:143-149.
 
【4】林翔.SERS基底的制备及其用于食品中污染物的快速检测[D].哈尔滨:哈尔滨工业大学, 2016.
 
【5】YASEEN T, PU H B, SUN D W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation:A review of recent research trends[J].Trends in Food Science & Technology, 2018,72:162-174.
 
【6】欧阳思怡,叶冰,刘燕德.表面增强拉曼光谱法在农药残留检测中的研究进展[J].食品与机械, 2013,29(01):243-246.
 
【7】ZHANG Y, ZHAO S J, ZHENG J K, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. TrAC Trends in Analytical Chemistry, 2017,90:1-13.
 
【8】邹婷婷,徐振林,杨金易,等.表面增强拉曼光谱技术在食品安全检测中的应用研究进展[J].分析测试学报, 2018,37(10):1174-1181.
 
【9】WILLETS K A, VAN DUYNE R P. Localized surface plasmon resonance spectroscopy and sensing[J]. Annual Review of Physical Chemistry, 2007,58(1):267-297.
 
【10】XIE X H, PU H B, SUN D W. Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis[J]. Critical Reviews in Food Science and Nutrition, 2018,58(16):2800-2813.
 
【11】FRENSG. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973,241(105):20-22.
 
【12】LEE P C, MEISEL D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols[J]. The Journal of Physical Chemistry, 1982,86(17):3391-3395.
 
【13】KUMAR G V P. Plasmonic nano-architectures for surface enhanced Raman scattering:a review[J]. Journal of Nanophotonics, 2012,6(1):1-20.
 
【14】BARBOSA S, AGRAWAL A, RODRÍGUEZ-LORENZO L, et al. Tuning size and sensing properties in colloidal gold nanostars[J]. Langmuir, 2010,26(18):14943-14950.
 
【15】YUAN H, LIU Y, FALES A M, et al. Quantitative surface-enhanced resonant Raman scattering multiplexing of biocompatible gold nanostars for in vitro and ex vivo detection[J]. Analytical Chemistry, 2013,85(1):208-212.
 
【16】HUY B T, PHAM Q T, AN N T T, et al. Development of a simple method for sensing melamine by SERS effect of Ag particles[J]. Journal of Luminescence, 2017,188:436-440.
 
【17】LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010,464(7287):392-395.
 
【18】SIVASHANMUGAN K, LEE H, SYU C H, et al. Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the detection of pesticides residue[J]. Journalof the Taiwan Institute of Chemical Engineers, 2017,75:287-291.
 
【19】YASEEN T, PU H B, SUN D W. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique[J]. Talanta, 2019,196:537-545.
 
【20】NGUYEN T H D, ZHANG Z, MUSTAPHA A, et al. Use of graphene and gold nanorods as substrates for the detection of pesticides by surface enhanced Raman spectroscopy[J]. Journalof Agricultural and Food Chemistry, 2014,62(43):10445-10451.
 
【21】KANG L L, CHU J Y, ZHAO H T, et al. Recent progress in the applications of graphene in surface-enhanced Raman scattering and plasmon-induced catalytic reactions[J]. Journal of Materials Chemistry C, 2015,3(35):9024-9037.
 
【22】常智义,汪露,梁相永,等.金纳米阵列薄膜的制备及在表面增强拉曼光谱中的应用[J].高分子材料科学与工程, 2018,34(12):119-123.
 
【23】LEE Y H, SHI W X, LEE H K, et al. Nanoscale surface chemistry directs the tunable assembly of silver octahedra into three two-dimensional plasmonic superlattices[J]. Nature Communications, 2015,6:1-7.
 
【24】ZHANG H, ZHANG W Y, GAO X, et al. Formation of the AuNPs/GO@MoS2/AuNPs nanostructures for the SERS application[J]. Sensors and Actuators B:Chemical, 2019,282:809-817.
 
【25】王盼.三维仿生柔性SERS基底构建及其用于果蔬表皮农药残留检测[D].武汉:华中农业大学, 2017.
 
【26】CHEN J M, HUANG Y J, KANNAN P, et al. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables[J]. Analytical Chemistry, 2016,88(4):2149-2155.
 
【27】TANG S Y, LI Y, HUANG H, et al. Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants[J]. ACS Applied Materials & Interfaces, 2017,9(8):7472-7480.
 
【28】李鹏辉,喻学锋,罗茜,等.磁性可移动拉曼增强检测芯片实现环境污染物的高灵敏快检[J].传感器世界, 2017,23(5):43-43.
 
【29】ZHANG R, ZHANG Y, DONG Z C, et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering[J]. Nature, 2013,498(7452):82-86.
 
【30】YU S H, LIU Z G, WANG W X, et al. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals[J]. Talanta, 2018,178:498-506.
 
【31】MENG F W, MA X Y, DUAN N, et al. Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly[J]. Talanta, 2017,165:412-418.
 
【32】LI D, MA Y D, DUAN H Z, et al. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite[J]. Biosensors and Bioelectronics, 2018,99:389-398.
 
【33】PU H B, XIAO W, SUN D W. SERS-microfluidic systems:a potential platform for rapid analysis of food contaminants[J]. Trends in Food Science & Technology, 2017,70:114-126.
 
【34】朱越洲,张月皎,李剑锋,等.表面增强拉曼光谱:应用和发展[J].应用化学, 2018,35(9):984-992.
 
【35】JIANG S, ZHANG Y, ZHANG R, et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering[J]. Nature Nanotechnology, 2015,10(10):865-869.
 
【36】张旻.表面增强拉曼光谱与微萃取分析方法联用现场检测有机污染物[D].济南:山东大学, 2017.
 
【37】FENG J Y, HU Y X, GRANT E, et al. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor[J]. Food Chemistry, 2018,239:816-822.
 
【38】PARISI J, DONG Q C, LEI Y. In situ microfluidic fabrication of SERS nanostructures for highly sensitive fingerprint microfluidic-SERS sensing[J]. RSC Advances, 2015,5(19):14081-14089.
 
【39】YANG X, HE Y, WANG X L, et al. A SERS biosensor with magnetic substrate CoFe2O4@Ag for sensitive detection of Hg2+[J]. Applied Surface Science, 2017,416:581-586.
 
【40】DU J J, JING C Y. One-step fabrication of dopamine-inspired Au for SERS sensing of Cd2+ and polycyclic aromatic hydrocarbons[J]. Analytica Chimica Acta, 2019,1062:131-139.
 
【41】BU X F, ZHANG Z Y, ZHANG L X, et al. Highly sensitive SERS determination of chromium(Ⅵ) in water based on carbimazole functionalized alginate-protected silver nanoparticles[J]. Sensors and Actuators B:Chemical, 2018,273:1519-1524.
 
【42】SONG L L, MAO K, ZHOU X D, et al. A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic(Ⅲ)[J]. Talanta, 2016,146:285-290.
 
【43】齐建平,齐楠,尤慧艳.基于功能化银纳米粒子的表面增强拉曼法检测水体中As3+[J].分析仪器, 2018(2):105-111.
 
【44】LI D, MA Y D, DUAN H Z, et al. Fluorescent/SERS dual-sensing and imaging of intracellular Zn2+[J]. Analytica Chimica Acta, 2018,1038:148-156.
 
【45】DUGANDŽIC V, KUPFER S, JAHN M, et al. A SERS-based molecular sensor for selective detection and quantification of copper(Ⅱ) ions[J]. Sensors and Actuators B:Chemical, 2019,279:230-237.
 
【46】WU Y, JIANG T T, WU Z Y, et al. Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag+ ion[J]. Talanta, 2018,185:30-36.
 
【47】胡宝鑫,魏思宇,胡晓宇,等.表面增强拉曼光谱对水中重金属汞离子的检测[J].广州化工, 2016,44(18):154-156.
 
【48】ZENG Y, WANG L H, ZENG L W, et al. A label-free SERS probe for highly sensitive detection of Hg2+ based on functionalized Au@Ag nanoparticles[J]. Talanta, 2017,162:374-379.
 
【49】DASARY S S R, JONES Y K, BARNES S L, et al. Alizarin dye based ultrasensitive plasmonic SERS probe for trace level cadmium detection in drinking water[J]. Sensors and Actuators B:Chemical, 2016,224:65-72.
 
【50】LV B, SUN Z L, ZHANG J F, et al. Multifunctional satellite Fe3O4-Au@TiO2 nano-structure for SERS detection and photo-reduction of Cr(Ⅵ)[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017,513:234-240.
 
【51】ZHANG Y Z, WANG Z Y, WU L, et al. Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique[J]. The Analyst, 2014,139(20):5148-5154.
 
【52】LUO W, CHEN M, HAO N Y, et al. In situ synthesis of gold nanoparticles on pseudo-paper films as flexible SERS substrate for sensitive detection of surface organic residues[J]. Talanta, 2019,197:225-233.
 
【53】HOU R Y, TONG M M, GAO W J, et al. Investigation of degradation and penetration behaviors of dimethoate on and in spinach leaves using in situ SERS and LC-MS[J]. Food Chemistry, 2017,237:305-311.
 
【54】XU Y, KUTSANEDZIE F Y H, HASSAN M M, et al. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk[J]. Spectrochimica Acta Part A:Molecularand Biomolecular Spectroscopy, 2019,206:405-412.
 
【55】CHEN J, HUANG M Z, KONG L L, et al. Jellylike flexible nanocellulose SERS substrate for rapid in situ non-invasive pesticide detection in fruits/vegetables[J]. Carbohydrate Polymers, 2019,205:596-600.
 
【56】WANG Q Z, LIU Y N, BAI Y W, et al. Superhydrophobic SERS substrates based on silver dendrite-decorated filter paper for trace detection of nitenpyram[J]. Analytica Chimica Acta, 2019,1049:170-178.
 
【57】ALSAMMARRAIE F K, LIN M S, MUSTAPHA A, et al. Rapid determination of thiabendazole in juice by SERS coupled with novel gold nanosubstrates[J]. Food Chemistry, 2018,259:219-225.
 
【58】XU Q, GUO X Y, XU L, et al. Template-free synthesis of SERS-active gold nanopopcorn for rapid detection of chlorpyrifos residues[J]. Sensors and Actuators B:Chemical, 2017,241:1008-1013.
 
【59】KUMAR S, GOEL P, SINGH J P. Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits[J]. Sensors and Actuators B:Chemical, 2017,241:577-583.
 
【60】YU J W, MA Y N, YANG C X, et al. SERS-active composite based on rGO and Au/Ag core-shell nanorods for analytical applications[J]. Sensors and Actuators B:Chemical, 2018,254:182-188.
 
【61】WALI L A, HASAN K K, ALWAN A M. Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019,206:31-36.
 
【62】SHI Q Q, HUANG J, SUN Y N, et al. A SERS-based multiple immuno-nanoprobe for ultrasensitive detection of neomycin and quinolone antibiotics via a lateral flow assay[J]. Microchimica Acta, 2018,185(2):1-8.
 
【63】AI Y J, LIANG P, WU Y X, et al. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS)[J]. Food Chemistry, 2018,241:427-433.
 
【64】CHEN Y L, LI X L, YANG M, et al. High sensitive detection of penicillin G residues in milk by surface-enhanced Raman scattering[J]. Talanta, 2017,167:236-241.
 
【65】JIANG X, CHEN Y L, DU J, et al. SERS investigation and high sensitive detection of carbenicillin disodium drug on the Ag substrate[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018,204:241-247.
 
【66】YAO W R, SUN Y Y, XIE Y F, et al. Development and evaluation of a surface-enhanced Raman scattering (SERS) method for the detection of the antioxidant butylated hydroxyanisole[J]. European Food Researchand Technology, 2011,233(5):835-840.
 
【67】SUN Y Y, XIE Y F, WANG H Y, et al. Adsorption of 2,6-di-t-butyl-p-hydroxytoluene (BHT) on gold nanoparticles:Assignment and interpretation of surface-enhanced Raman scattering[J]. Applied Surface Science, 2012,261:431-435.
 
【68】WANG J J, HASSAN M M, AHMAD W, et al. A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food[J]. Sensors and Actuators B:Chemical, 2019,285:302-309.
 
【69】黄亚伟,张令,王若兰,等.表面增强拉曼光谱在食品非法添加物检测中的应用进展[J].粮食与饲料工业, 2014(9):24-27.
 
【70】CREEDON N C, LOVERA P, FUREY A, et al. Transparent polymer-based SERS substrates templated by a soda can[J]. Sensors and Actuators B:Chemical, 2018,259:64-74.
 
【71】World Health Organ. (WHO). 2007. Food Safety and Food-Borne Illness. Fact Sheet No. 237.
 
【72】ZHANG Q, WANG X D, TIAN T, et al. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection[J]. Applied Surface Science, 2017,407:185-191.
 
【73】BOZKURT A G, BUYUKGOZ G G, SOFOROGLU M, et al. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018,194:8-13.
 
相关信息
   标题 相关频次
 基于适体修饰的金纳米粒子分光光度法测定牛奶中妥布霉素的残留量
 8
 表面增强拉曼光谱法测定牛奶中青霉素G钠的残留量
 6
 碳点在食品安全检测中的应用
 6
 基于金纳米粒子光学性质的比色传感器及其在食品安全检测中的应用
 4
 1960-2020年中国X射线荧光光谱分析评述文献评介
 2
 AVG曲线的应用
 2
 GB 15822.2—2005标准中2号试块的应用
 2
 SiCp与SiCw增强铝基复合材料的冲击试验
 2
 TMR传感器及其在电磁检测中的应用
 2
 X射线荧光光谱法在环境监测中的发展与应用
 2
 奥氏体不锈钢对接焊接头对比试块的制作及应用
 2
 铋系光电材料及其在化学传感器中的应用
 2
 玻璃钢缠绕贮罐在金川有色冶金生产中的应用
 2
 材料物理模拟技术的发展及其在中国的应用
 2
 采用双层辉光等离子技术在420不锈钢表面制备ZrO2改性层
 2
 测速支架的研发与应用
 2
 常温固化防腐蚀氟涂层的研制及应用
 2
 超高效液相色谱在烟草化学分析中的应用
 2
 超滑表面技术及其在合金防腐蚀方面应用的研究进展
 2
 超声检测技术的最新研究与应用
 2
 超声衍射时差法用于核电站常规岛管道焊缝检测的可行性
 2
 磁性固相萃取在食品安全检测中的应用进展
 2
 低压离子色谱法及其应用
 2
 电沉积法制备超疏水涂层的研究进展
 2
 电弧喷涂1Cr18Ni9Ti不锈钢修复造纸烘缸
 2
 电化学免疫传感器在食品安全检测中的应用进展
 2
 电力线路工程化料系统的研发与应用
 2
 电位滴定法在药物分析中的应用进展
 2
 防打孔盗油用管道内检测器的研制与应用
 2
 防锈油的使用对普冷板防锈性能的影响
 2