搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
核用传热管表面划伤致应力腐蚀失效问题及研究进展
          
An Overview on the Stress Corrosion Cracking Caused by Scratches on Steam Generator Tubes

摘    要
综述了金属表面划伤的理论模型、划伤区的变形特点、影响因素及其对应力腐蚀影响的研究进展,介绍了压水堆核电站传热管的服役环境和表面划伤案例、来源及工程对策,讨论了表面划伤对蒸汽发生器传热管应力腐蚀失效的影响及研究进展。总结现有研究中亟待解决的问题,提出对进一步完善表面划伤理论模型、深入认识划伤影响区损伤特点和应力腐蚀机制、传热管表面划伤安全阈值评估、表面修复工艺等研究方向的展望。
标    签 表面划伤   变形   核电   传热管   应力腐蚀   scratch   deformation   nuclear power   steam generator tube   stress corrosion  
 
Abstract
This paper summarizes the theoretical model of scratches on the metal surface, the characteristics of the deformation zone caused by scratch and its impacts on stress corrosion cracking. The failure cases caused by scratches on steam generator tubes in pressurized water reactor nuclear power plants are introduced, and so are the sources of surface scratches and the corresponding repair methods or strategies. The effects of surface scratches on the stress corrosion failure of steam generator tubes and the research progress are discussed. The potential research topics and directions in the future are also proposed, such as further improving the theoretical model of surface scratches, deepening the understanding of the damage characteristics and stress corrosion mechanism in the affected area by scratches, the safety scratch threshold evaluation and surface repair methods.

中图分类号 TG174   DOI 10.11973/fsyfh-202009001

 
  中国光学期刊网论文下载说明


所属栏目 核电设备的腐蚀与防护

基金项目 国家自然科学基金(51771211);国家重点研发计划(2019YFB1900904)

收稿日期 2020/5/10

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: WU Bin,MENG Fanjiang,HE Guangqing,MING Hongliang,ZHANG Zhiming,WANG Jianqiu. An Overview on the Stress Corrosion Cracking Caused by Scratches on Steam Generator Tubes[J]. Corrosion & Protection, 2020, 41(9): 1


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】STAEHLE R W,GORMAN J A. Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors:part 1[J]. Corrosion,2003,59(11):931-994.
 
【2】SINHA S K. 180 Years of scratch testing[J]. Tribology International,2006,39(2):61-68.
 
【3】WILLIAMS J A. Analytical models of scratch hardness[J]. Tribology International,1996,29(8):675-694.
 
【4】RUDERMANN Y,IOST A,BIGERELLE M. Scratch tests to contribute designing performance maps of multilayer polymeric coatings[J]. Tribology International,2011,44(5):585-591.
 
【5】LEE Y H,PARK J H,KIM I H,et al. Enhanced wear resistance of CrAl-coated cladding for accident-tolerant fuel[J]. Journal of Nuclear Materials,2019,523:223-230.
 
【6】WANG J Z,LI X H,WANG J Q,et al. Development of a scratch electrode system in high temperature high pressure water[J]. Corrosion Science,2015,95:125-132.
 
【7】GONG J L,LIPOMI D J,DENG J D,et al. Micro and nanopatterning of inorganic and polymeric substrates by indentation lithography[J]. Nano Letters,2010,10(7):2702-2708.
 
【8】DALMAU A,RMILI W,JOLY D,et al. Tribological behavior of new martensitic stainless steels using scratch and dry wear test[J]. Tribology Letters,2014,56(3):517-529.
 
【9】WREDENBERG F,LARSSON P L. Scratch testing of metals and polymers:experiments and numerics[J]. Wear,2009,266(1/2):76-83.
 
【10】JIANG H,BROWNING R,SUE H J. Understanding of scratch-induced damage mechanisms in polymers[J]. Polymer,2009,50(16):4056-4065.
 
【11】DOMAN D A,BAUER R,WARKENTIN A. Experimentally validated finite element model of the rubbing and ploughing phases in scratch tests[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2009,223(12):1519-1527.
 
【12】HAHN R S,LINDSAY R P. On the rounding-up process in high-production internal grinding machines by digital computer simulation[M]//Proceedings of the Twelfth International Machine Tool Design and Research Conference. London:Macmillan Education,1972:235-240.
 
【13】TAKENAKA N. A study on the grinding action by single grit[J]. Annals of the CIRP,1966,13(1):183-190.
 
【14】DOMAN D A. Rubbing & plowing phases in single grain grinding[M]. Ann Arbor:ProQuest,2009.
 
【15】KANNAPPAN S,MALKIN S. Effects of grain size and operating parameters on the mechanics of grinding[J]. Journal of Engineering for Industry,1972,94(3):833-842.
 
【16】SHAW M C. Energy conversion in cutting and grinding[J]. CIRP Annals,1996,45(1):101-104.
 
【17】ROWE W B. Grinding technology-theory and applications of machining with abrasives[J]. Tribology International,1990,23(6):443.
 
【18】GHOSH S,CHATTOPADHYAY A B,PAUL S. Modelling of specific energy requirement during high-efficiency deep grinding[J]. International Journal of Machine Tools and Manufacture,2008,48(11):1242-1253.
 
【19】WANG H,SUBHASH G. An approximate upper bound approach for the single-grit rotating scratch with a conical tool on pure metal[J]. Wear,2002,252(11/12):911-933.
 
【20】GODDARD J,WILMAN H. A theory of friction and wear during the abrasion of metals[J]. Wear,1962,5(2):114-135.
 
【21】BRINKSMEIER E,AURICH J C,GOVEKAR E,et al. Advances in modeling and simulation of grinding processes[J]. CIRP Annals,2006,55(2):667-696.
 
【22】BUCAILLE J,FELDER E,HOCHSTETTER G. Mechanical analysis of the scratch test on elastic and perfectly plastic materials with the three-dimensional finite element modeling[J]. Wear,2001,249(5/6):422-432.
 
【23】MACKERLE J. Finite-element analysis and simulation of machining:a bibliography (1976-1996)[J]. Journal of Materials Processing Technology,1999,86(1/2/3):17-44.
 
【24】DOMAN D A,WARKENTIN A,BAUER R. Finite element modeling approaches in grinding[J]. International Journal of Machine Tools and Manufacture,2009,49(2):109-116.
 
【25】WASMER K,PARLINSKA-WOJTAN M,GASSILLOUD R,et al. Plastic deformation modes of gallium arsenide in nanoindentation and nanoscratching[J]. Applied Physics Letters,2007,90(3):031902.
 
【26】BEN TKAYA M,ZIDI M,MEZLINI S,et al. Influence of the attack angle on the scratch testing of an aluminium alloy by cones:experimental and numerical studies[J]. Materials & Design,2008,29(1):98-104.
 
【27】WILLIAMS J A,XIE Y. The generation of wear surfaces by the interaction of parallel grooves[J]. Wear,1992,155(2):363-379.
 
【28】ELWASLI F,ZEMZEMI F,MKADDEM A,et al. A 3D multi-scratch test model for characterizing material removal regimes in 5083-Al alloy[J]. Materials & Design,2015,87:352-362.
 
【29】DAI H F,LI S B,CHEN G Y. Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2019,233(1):61-73.
 
【30】RANDALL N X,FAVARO G,FRANKEL C H. The effect of intrinsic parameters on the critical load as measured with the scratch test method[J]. Surface and Coatings Technology,2001,137(2/3):146-151.
 
【31】GASSILLOUD R,BALLIF C,GASSER P,et al. Deformation mechanisms of silicon during nanoscratching[J]. Physica Status Solidi (a),2005,202(15):2858-2869.
 
【32】LIN L,BLACKMAN G S,MATHESON R R. Quantitative characterization of scratch and mar behavior of polymer coatings[J]. Materials Science and Engineering:A,2001,317(1/2):163-170.
 
【33】ADAMS M J,ALLAN A,BRISCOE B J,et al. An experimental study of the nano-scratch behaviour of poly (methyl methacrylate)[J]. Wear,2001,251:1579-1583.
 
【34】RABINOWICZ E,TANNER R I. Friction and wear of materials[J]. Journal of Applied Mechanics,1966,33(2):479.
 
【35】DIERCKS D R,SHACK W J,MUSCARA J. Overview of steam generator tube degradation and integrity issues[J]. Nuclear Engineering and Design,1999,194(1):19-30.
 
【36】CRUM J R,SCARBERRY R C. Corrosion testing of INCONEL alloy 690 for PWR steam generators[J]. Journal of Materials for Energy Systems,1982,4(3):125-130.
 
【37】ZINKLE S J,WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia,2013,61(3):735-758.
 
【38】LU Y. Effect of hazardous impurities on steam generator tube degradation[C]//18th International Conference on Nuclear Engineering. Xi'an:American Society of Mechanical Engineers Digital Collection,2010:283-291.
 
【39】LU B T,LUO J L,LU Y C. A mechanistic study on lead-induced passivity-degradation of nickel-based alloy[J]. Journal of the Electrochemical Society,2007,154(8):C379.
 
【40】STAEHLE R W. Bases for predicting the earliest penetrations due to SCC for alloy 600 on the secondary side of PWR steam generators[M]. Washington DC:Nuclear Regulatory Commission,2001.
 
【41】臧希年. 核电厂系统及设备[M]. 北京:清华大学出版社,2010.
 
【42】KUCHIRKA P J,BLASZKIEWICZ M,BYERS W A,et al. EPRI report TR-106863:Oconee 2 steam generator tube examination[R]. EPRI.[S.l.]:[s.n.],1997.
 
【43】SYKES L J,SHERBURNE P A. EPRI report TR-106484:Analysis of steam generator tubing from oconee Unit 1 nuclear station[R]. EPRI.[S.l.]:[s.n.],1997.
 
【44】YOO S C,CHOI K J,KIM T,et al. Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy[J]. Corrosion Science,2016,111:39-51.
 
【45】MOUGINOT R,SARIKKA T,HEIKKILÄ M,et al. Thermal ageing and short-range ordering of Alloy 690 between 350 and 550℃[J]. Journal of Nuclear Materials,2017,485:56-66.
 
【46】MOUGINOT R,SARIKKA T,HEIKKILÄ M,et al. Development of short-range order and intergranular carbide precipitation in alloy 690 TT upon thermal ageing[M]//The Minerals,Metals & Materials Series. Cham:Springer International Publishing,2017:321-334.
 
【47】YOUNG G A. Long range ordering in model Ni-Cr-X alloys[C]//Proceedings of the International Symposium Fontevraud 8 on the Contribution of Materials Investigations and Operating Experience to LWRs' Safety,Performance and Reliability. Avignon:[s.n.],2014.
 
【48】丁训慎. 蒸汽发生器传热管的破损及其监督和检查[J]. 动力工程,1997(6):79-85.
 
【49】李翠翠,和广庆. 核电蒸汽发生器胀接接头质量事故分析及应对措施研究[J]. 压力容器,2019,36(11):70-73.
 
【50】SUOMINEN F M L,KLASSEN R J,MCINTYRE N S,et al. Texture,residual strain,and plastic deformation around scratches in alloy 600 using synchrotron X-ray Laue micro-diffraction[J]. Journal of Nuclear Materials,2008,374(3):482-487.
 
【51】孟凡江,王俭秋,韩恩厚,等. 690TT合金划痕显微组织及划伤诱发的应力腐蚀[J]. 金属学报,2011,47(7):839-846.
 
【52】ANDRESEN P L,FORD F. Fundamental modeling of environmental cracking for improved design and lifetime evaluation in BWRs[J]. International Journal of Pressure Vessels and Piping,1994,59(1/2/3):61-70.
 
【53】FORD F P. Quantitative prediction of environmentally assisted cracking[J]. Corrosion,1996,52(5):375-395.
 
【54】ARIOKA K,YAMADA T,MIYAMOTO T,et al. Dependence of stress corrosion cracking of alloy 690 on temperature,cold work,and carbide precipitation-role of diffusion of vacancies at crack tips[J]. Corrosion,2011,67(3):035006-1-035006-18.
 
【55】HOU J,PENG Q J,LU Z P,et al. Effects of cold working degrees on grain boundary characters and strain concentration at grain boundaries in Alloy 600[J]. Corrosion Science,2011,53(3):1137-1142.
 
【56】ANDRESEN P L,MORRA M M,AHLUWALIA K. SCC of alloy 690 and its weld metals[M]//Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors. Cham:Springer International Publishing,2011:161-178.
 
【57】WANG S,SHOJI T,KAWAGUCHI N. Initiation of environmentally assisted cracking in high-temperature water[J]. Corrosion,2005,61(2):137-144.
 
【58】ARIOKA K,ⅡJIMA Y,MIYAMOTO T. Rapid nickel diffusion in cold-worked carbon steel at 320-450℃[J]. Philosophical Magazine,2015,95(32):3577-3589.
 
【59】TORIBIO J. Residual stress effects in stress-corrosion cracking[J]. Journal of Materials Engineering and Performance,1998,7(2):173-182.
 
【60】MENG F J,WANG J Q,HAN E H,et al. Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58℃ and 330℃[J]. Corrosion Science,2009,51(11):2761-2769.
 
【61】MENG F J,HAN E H,WANG J Q,et al. Localized corrosion behavior of scratches on nickel-base alloy 690TT[J]. Electrochimica Acta,2011,56(4):1781-1785.
 
【62】孟凡江,王俭秋,韩恩厚,等. 划伤690TT合金在高温含氧水中应力腐蚀裂纹萌生的研究[J]. 中国腐蚀与防护学报,2013,33(5):413-418.
 
【63】MORTON D,LEWIS N,HANSON M,et al. Nickel alloy primary water bulk surface and SCC corrosion film analytical characterization and SCC mechanistic implications[R]. EPRI.[S.l.]:[s.n.],2007.
 
【64】ZHANG Z M,WANG J Q,HAN E H,et al. Analysis of surface oxide films formed in hydrogenated primary water on alloy 690TT samples with different surface states[J]. Journal of Materials Science & Technology,2014,30(12):1181-1192.
 
【65】KUANG W J,SONG M,WANG P,et al. The oxidation of alloy 690 in simulated pressurized water reactor primary water[J]. Corrosion Science,2017,126:227-237.
 
【66】HUANG F,WANG J Q,HAN E H,et al. Microstructural characteristics of the oxide films formed on Alloy 690 TT in pure and primary water at 325℃[J]. Corrosion Science,2013,76:52-59.
 
相关信息
   标题 相关频次
 不同水化学条件下800合金传热管的均匀腐蚀性能
 6
 核电用304L不锈钢包壳的慢应变速率拉伸试验
 4
 铅对划伤690合金应力腐蚀行为的影响
 4
 铁离子辐照对核用304不锈钢在高温水中腐蚀行为的影响
 4
 某核电站高温取样冷却器传热管开裂原因
 3
 蒸汽发生器传热管材料划伤诱发应力腐蚀开裂与划伤控制
 3
 1 000 MW核电机组主蒸汽隔离阀基板块螺栓裂纹分析
 2
 1Cr13不锈钢在湿H2S环境中的应力腐蚀行为
 2
 1Cr5Mo钢弯管开裂原因分析
 2
 20CrMnTi齿轮钢的应力腐蚀行为
 2
 22Cr双相不锈钢与304L、316L钢在氯化物溶液中耐应力腐蚀性能的比较
 2
 2A14铝合金去应力热时效的作用
 2
 304L不锈钢换热管泄漏原因分析
 2
 304不锈钢焊管应力腐蚀开裂原因
 2
 304不锈钢弯头开裂失效分析
 2
 304不锈钢在核电站二回路水环境中的应力腐蚀开裂行为
 2
 316LN奥氏体不锈钢在含Cl-溶液中的腐蚀行为
 2
 316L奥氏体不锈钢碱液储罐开裂原因
 2
 316L不锈钢板式换热器泄漏原因
 2
 316L不锈钢人孔盖板爆裂原因分析
 2
 316L不锈钢液控管线在稠油热采服役环境下的应力腐蚀行为
 2
 600 MW超临界机组低压转子叶片开裂分析
 2
 6063铝合金在不同应力状态下的变形及损伤行为
 2
 7075铝合金高锁螺母开裂原因
 2
 7A85铝合金承载构件断裂原因
 2
 AISI4340高强钢在含氧和/或Cl-高温水中的应力腐蚀行为
 2
 AZ91D镁合金在两种盐溶液和空气中的一般腐蚀和应力腐蚀
 2
 BZ102井S13Cr110钢油管裂纹成因分析
 2
 Ca对Mg-7Al合金应力腐蚀行为的影响
 2
 DR与传统胶片技术在核电检测中的能效对比
 2