搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
激光增材制造金属零部件变形的研究现状
          
Research Status on the Deformation of Metal Components byLaser Additive Manufacturing

摘    要
激光增材制造是一种较理想的高效率、高柔性的先进制造技术。在激光增材制造过程中,材料经历循环往复的骤热骤冷过程。这种骤热骤冷的加工方式会使金属零部件产生严重的残余应力,导致难以预测的变形问题,这已成为制约该技术发展和应用的瓶颈。从形成机制、检测方法、影响因素和数值模拟方面综述了激光增材制造金属零部件变形的研究现状,重点介绍了激光功率、扫描速度、扫描策略、基板预热等工艺参数对金属零部件变形的影响,阐述了当前增材制件变形的预测及调控方法,指出了未来激光增材制造变形控制的研究方向。
标    签 金属零部件   激光增材制造   残余应力   变形   数值模拟   metal component   laser additive manufacturing   residual stress   deformation   numerical simulation  
 
Abstract
Laser additive manufacturing is an ideal advanced manufacturing technique with high efficiency and high flexibility. Materials undergo a cyclic rapid heating and cooling process during laser additive manufacturing, producing severe residual stresses in metal components and leading to unpredictable deformation problems. This has become a bottleneck to restrict the development and application of the technique. The research status of deformation of metal components during laser additive manufacturing is reviewed from aspects of formation mechanism, testing methods, influencing factors and numerical simulation. The effects of laser power, scanning speed, scanning strategy, substrate preheating and other process parameters on deformation of metal components are described in detail. The prediction and control methods of the current additive manufactured product deformation are described. The future research direction of laser additive manufacturing deformation control is prospected.

中图分类号 TN249   DOI 10.11973/jxgccl202009002

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 上海市科委“创新行动计划”基础研究项目(17JC1400600);上海市青年科技英才杨帆计划项目(19YF1417500)

收稿日期 2019/8/28

修改稿日期 2020/7/7

网络出版日期

作者单位点击查看

备注谭志俊(1994-),男,山西朔州人,硕士研究生

引用该论文: TAN Zhijun,GAO Shuang,HE Bo. Research Status on the Deformation of Metal Components byLaser Additive Manufacturing[J]. Materials for mechancial engineering, 2020, 44(9): 11~16
谭志俊,高双,何博. 激光增材制造金属零部件变形的研究现状[J]. 机械工程材料, 2020, 44(9): 11~16


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】王华明.高性能大型金属构件激光增材制造:若干材料基础问题[J].航空学报,2014,35(10):2690-2698.
 
【2】卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.
 
【3】ROCHUS P,PLESSERIA J,VAN ELSEN M,et al. New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation[J]. Acta Astronautica,2006,61(1):352-359.
 
【4】VANDENBROUCKE B,KRUTH J. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal,2007,13(4):196-203.
 
【5】MANVATKAR V,DE A,DEBROY T,et al. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process[J]. Materials Science & Technology,2015,31(8):924-930.
 
【6】MANVATKAR V,DE A,DEBROY T,et al. Heat transfer and material flow during laser assisted multi-layer additive manufacturing[J]. Journal of Applied Physics,2014,116(12):133.
 
【7】LI C,FU C H,GUO Y B,et al. A multiscale modeling approach for fast prediction of part distortion in selective laser melting[J]. Journal of Materials Processing Technology,2016,229:703-712.
 
【8】MUKHERJEE T,ZUBACK J S,DE A,et al. Printability of alloys for additive manufacturing[J]. Scientific Reports,2016,6(1):19717.
 
【9】PARRY L,ASHCROFT I A,WILDMAN R D,et al. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing,2016,12:1-15.
 
【10】WANG Z,STOICA A D,MA D,et al. Stress relaxation behavior and mechanisms in Ti-6Al-4V determined via in situ neutron diffraction:Application to additive manufacturing[J]. Materials Science and Engineering: A,2017,707:585-592.
 
【11】祝彬彬.选择性激光熔化金属零件翘曲变形的研究[D].杭州:浙江工业大学,2017.
 
【12】MARIMUTHU S,CLARK D,ALLEN J,et al. Finite element modelling of substrate thermal distortion in direct laser additive manufacture of an aero-engine component[J].Journal of Mechanical Engineering Science,2013,227(9):1987-1999.
 
【13】CAO J,GHARGHOURI M A,NASH P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates[J]. Journal of Materials Processing Technology,2016,237:409-419.
 
【14】AFAZOV S M,DENMARK W,TORALLES B L,et al. Distortion prediction and compensation in selective laser melting[J]. Additive Manufacturing,2017,17:15-22.
 
【15】BUDZIK G. Geometric accuracy of aircraft engine blade models constructed by means of the generative rapid prototyping methods FDM and SLA[J]. Advances in Manufacturing Science and Technology,2010,34(1):32-43.
 
【16】DUNBAR A J,DENLINGER E R,HEIGEL J C,et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing,2016,12:25-30.
 
【17】XIE R,CHEN G,ZHAO Y,et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes,2019,38:494-501.
 
【18】BIEGLER M,GRAF B,RETHMEIER M. In-situ distortions in LMD additive manufacturing walls can be measured with digital image correlation and predicted using numerical simulations[J]. Additive Manufacturing,2018,20:101-110.
 
【19】MUKHERJEE T,MANVATKAR V,DE A,et al. Mitigation of thermal distortion during additive manufacturing[J]. Scripta Materialia,2017,127:79-83.
 
【20】LI Y,GU D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design,2014,63:856-867.
 
【21】MUGWAGWA L,DIMITROV D,MATOPE S,et al. Influence of process parameters on residual stress related distortions in selective laser melting[J]. Procedia Manufacturing,2018,21:92-99.
 
【22】MUKHERJEE T,ZHANG W,DEBROY T. An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science,2017,126:360-372.
 
【23】POHL H,SIMCHI A,ISSA M,et al. Thermal stresses in direct metal laser sintering [EB/OL].(2001-01-19)[2019-08-28].http://repositories.lib.utexas.edu/handle/2152176240.
 
【24】DENLINGER E R,HEIGEL J C,MICHALERIS P,et al. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys[J]. Journal of Materials Processing Technology,2015,215:123-131.
 
【25】葛亚楠,武美萍,冒浴沂,等.激光选区熔化扫描策略对钛合金成形精度的影响[J].激光与光电子学进展, 2018,55(9):091403.
 
【26】QIU C,ADKINS N J,ATTALLAH M M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2013,578:230-239.
 
【27】陈德宁,刘婷婷,廖文和,等.扫描策略对金属粉末选区激光熔化温度场的影响[J].中国激光,2016,43(4):0403003.
 
【28】李九霄,李鸣佩,杨东野,等.选择性激光熔化制造金属构件残余应力的研究进展[J].机械工程材料,2018,42(8):1-6.
 
【29】NICKEL A,BARNETT D M,PRINZ F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science and Engineering: A, 2001,317(1):59-64.
 
【30】YAN H,SHEN L,WANG X,et al. Stress and deformation evaluation of the subarea scanning effect in direct laser-deposited Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2018,97(1):915-926.
 
【31】RAMOS D,BELBLIDIA F,SIENZ J. New scanning strategy to reduce warpage in additive manufacturing[J]. Additive Manufacturing,2019,28:554-564.
 
【32】GIBSON I,ROSEN D,STUCKER B. Software issues for additive manufacturing[M]. New York:Springer,2015.
 
【33】GAO M,WANG Z,LI X,et al. The effect of deposition patterns on the deformation of substrates during direct laser fabrication[J]. Journal of Engineering Materials and Technology,2013,135(3):034502.
 
【34】陶攀,李怀学,黄柏颖,等.激光选区熔化AlSi10Mg合金悬臂梁残余变形的数值模拟[J].特种铸造及有色合金,2018,38(5):493-497.
 
【35】BUCHBINDER D,MEINERS W,PIRCH N,et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications,2014,26(1):012004.
 
【36】ALI H,GHADBEIGI H,MUMTAZ K. Effect of scanning strategies on residual stress and mechanical properties of selective laser melted Ti6Al4V[J]. Materials Science and Engineering: A,2018,712:175-187.
 
【37】ABE F,OSAKADA K,SHIOMI M,et al. The manufacturing of hard tools from metallic powders by selective laser melting[J]. Journal of Materials Processing Technology,2001,111(1):210-213.
 
【38】ROEHLING J D,SMITH W L,ROEHLING T T,et al. Reducing residual stress by selective large-area diode surface heating during laser powder bed fusion additive manufacturing[J]. Additive Manufacturing, 2019,28:228-235.
 
【39】LIU S,SHIN Y C. Additive manufacturing of Ti6Al4V alloy: A review[J]. Materials & Design,2019,164:107552.
 
【40】BAILEY N S,KATINAS C,SHIN Y C. Laser direct deposition of AISI H13 tool steel powder with numerical modeling of solid phase transformation,hardness,and residual stresses[J]. Journal of Materials Processing Technology,2017,247:223-233.
 
【41】YAGHI A,AYVAR-SOBERANIS S,MOTURU S,et al. Design against distortion for additive manufacturing[J]. Additive Manufacturing,2019,27:224-235.
 
相关信息
   标题 相关频次
 不同工艺下GH4169镍基高温合金电弧增材制造热力场数值模拟
 6
 2A14铝合金去应力热时效的作用
 4
 Inconel 625镍基合金管道焊接残余应力的数值模拟
 4
 考虑相变的高强钢T型接头焊接残余应力和变形的数值模拟
 4
 铝-镁异种合金搅拌摩擦搭接焊残余应力数值模拟
 4
 热源偏移对钢/铝异种材料等离子弧焊接接头温度场和残余应力的影响
 4
 选择性激光熔化制造金属构件残余应力的研究进展
 4
 增加回火工序对GCr15轴承钢套圈变形的影响
 4
 铸件残余应力的测定和消除方法
 4
 原位自生(TiC+TiB)/Ti复合材料的显微组织与残余应力
 3
 16MnD5钢板焊接件热影响区开裂原因分析
 2
 16MnR钢板焊接对接接头残余应力磁记忆检测研究
 2
 16Mn钢弯管的开裂原因
 2
 17Cr2Ni2Mo钢的表面复合喷丸强化
 2
 18Cr2Ni4WA钢氮化和喷丸强化处理的残余应力及性能
 2
 1Cr18Ni9Ti不锈钢导管开裂原因分析
 2
 2519铝合金管材热挤压过程的数值模拟
 2
 300M钢热损伤的巴克豪森检测
 2
 304不锈钢薄壁焊管表面残余拉应力的测定及消除
 2
 304不锈钢焊缝附近的点蚀损伤发展规律
 2
 304不锈钢焊管应力腐蚀开裂原因
 2
 30CrMnSiNi2A钢轮轴表面镀硬铬区域开裂的原因及控制措施
 2
 316L奥氏体不锈钢碱液储罐开裂原因
 2
 316L不锈钢板式换热器泄漏原因
 2
 316不锈钢护栏腐蚀失效分析
 2
 42CrMoA钢的单次喷丸和复合喷丸强化
 2
 45Cr4NiMoV钢支承辊锻件表面感应淬火后的残余应力分布
 2
 45钢交流闪光对焊焊接热影响区晶粒长大的数值模拟
 2
 5A06铝合金包铝层与基体X-ray残余应力检测中的衍射峰峰位差异分析
 2
 6013-T4铝合金在不同温度和应变速率下的动态力学行为及数值模拟
 2