搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织
          
Microstructure of CoCrFeNiTiCuMoxVx High Entropy Alloy PowderPrepared by Mechanical Alloying

摘    要
采用高能行星式球磨机对CoCrFeNiTiCuMoxVxx=0.5,1.0,1.5,2.0,原子比)粉末进行机械合金化制备高熵合金粉末,利用X射线衍射、扫描电镜、透射电镜研究了钼和钒含量对合金粉末物相组成、晶粒尺寸、晶格应变的影响。结果表明:高能球磨后,纯金属相的衍射峰消失,得到了BCC+FCC双相结构的合金粉末;随着钼和钒含量的增加,BCC相含量增加,FCC相减少;合金粉末颗粒的尺寸在100~200 nm,颗粒呈扁平片状,随着钼和钒含量的增加,合金粉末的晶粒尺寸减小,晶格应变增大。
标    签 机械合金化   高熵合金粉末   物相组成   晶粒尺寸   晶格应变   mechanical alloying   high entropy alloy powder   phase composition   grain size   lattice strain  
 
Abstract
CoCrFeNiTiCuMoxVx(x=0.5,1.0,1.5,2.0, atomic ratio) powder was mechanically alloyed in a high-energy planetary ball mill to prepare high entropy alloy powder, and influence of molybdenum and vanadium content on the phase composition, grain size and lattice strain of the alloy powder was studied by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results show that the diffraction peaks of pure metal phases disappeared, and the alloy powder with a dual-phase structure of BCC+FCC was obtained after high-energy ball milling. The content of BCC phase increased, FCC phase decreased with the increase of molybdenum and vanadium content. The alloy powder particle size was between 100-200 nm, and the particles were flat. The grain size of the alloy powder decreased and the lattice strain increased as the content of molybdenum and vanadium increased.

中图分类号 TB31   DOI 10.11973/jxgccl202010005

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 湖南省自然科学基金资助项目(2019JJ50524);金属矿山安全与健康国家重点实验室开放基金资助项目(2019-JSKSSYS-009);衡阳市科技局项目(2017KJ293);湖南省大学生研究性学习和创新性实验计划项目

收稿日期 2019/8/14

修改稿日期 2020/7/22

网络出版日期

作者单位点击查看

备注周娟(1982-),女,湖南湘乡人,讲师,博士

引用该论文: ZHOU Juan,FAN Xiangfang,CHEN Yong,GOU Yi,LI Yongqiao. Microstructure of CoCrFeNiTiCuMoxVx High Entropy Alloy PowderPrepared by Mechanical Alloying[J]. Materials for mechancial engineering, 2020, 44(10): 22~27
周娟,樊湘芳,陈勇,苟毅,李永峭. 机械合金化制备CoCrFeNiTiCuMoxVx高熵合金粉末的显微组织[J]. 机械工程材料, 2020, 44(10): 22~27


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:Novel alloy design concepts and outcomes[J].Advanced Engineering Materials, 2004,6(5):299-303.
 
【2】CHUANG M H,TSAI M H,WANG W R,et al.Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Ti<i>y high-entropy alloys[J].Acta Materialia,2011,59(16):6308-6317.
 
【3】ZOU Y,MA H,SPOLENAK R.Ultrastrong ductile and stable high-entropy alloys at small scales[J].Nature Communications, 2015,6:7748.
 
【4】WU Y D,CAI Y H,WANG T,et al.A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties[J].Materials Letters, 2014,130:277-280.
 
【5】DENG Y,TASAN C C,PRADEEP K G,et al.Design of a twinning-induced plasticity high entropy alloy[J].Acta Materialia, 2015,94:124-133.
 
【6】LI D Y,LI C X,FENG T,et al.High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J].Acta Materialia, 2017,123:285-294.
 
【7】GLUDOVATZ B,HOHENWARTER A,CATOOR D,et al.A fracture-resistant high-entropy alloy for cryogenic applications[J].Science, 2014,345(6201):1153-1158.
 
【8】TANG Z,YUAN T,TSAI C W,et al.Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy[J].Acta Materialia, 2015,99:247-258.
 
【9】HEMPHILL M A,YUAN T,WANG G Y,et al.Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys[J].Acta Materialia, 2012,60(16):5723-5734.
 
【10】WANG X F,ZHANG Y,QIAO Y,et al.Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys[J].Intermetallics, 2007,15(3):357-362.
 
【11】WANG F J,ZHANG Y.Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy[J].Materials Science and Engineering:A, 2008,496(1/2):214-216.
 
【12】ZHOU Y J,ZHANG Y,WANG Y L,et al.Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties[J].Applied Physics Letters, 2007,90(18):181904.
 
【13】LIU Y,WANG J S,FANG Q H,et al.Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder[J].Intermetallics, 2016,68:16-22.
 
【14】SCHUH B,MENDEZ-MARTIN F,VÖLKER B,et al.Mechanical properties,microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J].Acta Materialia, 2015,96:258-268.
 
【15】蒋烨, 陈可, 王伟. 机械合金化法制备AlCoNiFeCr高熵合金涂层[J]. 中国有色金属学报, 2018, 28(9):1784-1790.
 
【16】袁尹明月,彭坤,王海鹏,等.机械合金化方法制备AlxCoCrCu0.5FeNi高熵合金组织结构和性能研究[J].材料导报,2016,30(16):69-73.
 
【17】FANG S C,CHEN W P,FU Z Q.Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering[J].Materials and Design,2014,54:973-979.
 
【18】JI W,WANG W M,WANG H,et al.Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering[J].Intermetallics, 2015,56:24-27.
 
【19】GWALANI B,SONI V,WASEEM O A,et al.Laser additive manufacturing of compositionally graded AlCrFeMoV<i>x (x=0 to 1) high-entropy alloy system[J].Optics and Laser Technology,2019,113:330-337.
 
【20】CHEN Y L,HU Y H,TSAI C W,et al.Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying[J].Journal of Alloys and Compounds, 2009,477(1/2):696-705.
 
【21】STEPANOV N D,SHAYSULTANOV D G,SALISHCHEV G A,et al.Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys[J].Journal of Alloys and Compounds, 2015,628:170-185.
 
【22】TSAI M H,TSAI K Y,TSAI C W,et al.Criterion for sigma phase formation in Cr- and V-containing high-entropy alloys[J].Materials Research Letters,2013,1(4):207-212.
 
【23】ZHANG Y,ZHOU Y,LIN J,et al.Solid-solution phase formation rules for multi-component alloys[J].Advanced Engineering Materials, 2008,10(6):534-538.
 
【24】POLETTI M G,FIORE G,SZOST B A,et al.Search for high entropy alloys in the X-NbTaTiZr systems (X=Al,Cr,V,Sn)[J].Journal of Alloys and Compounds, 2015,620:283-288.
 
【25】YEH J W,CHANG S Y,HONG Y D,et al.Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements[J].Materials Chemistry and Physics, 2007,103(1):41-46.
 
【26】ZHANG Y,ZUO T T,TANG Z,et al.Microstructures and properties of high-entropy alloys[J].Progress in Materials Science, 2014,61:1-93.
 
【27】TIAN L H,FU M,XIONG W.Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance[J].Materials, 2018,11(2):320.
 
相关信息
   标题 相关频次
 机械合金化-退火法制备两相区铝钌合金粉
 4
 2A12铝合金喷射沉积坯的形状控制及显微组织
 2
 304奥氏体不锈钢焊缝低温热老化后的显微组织与力学性能
 2
 304不锈钢晶粒尺寸的超声检测
 2
 410 MPa级钢制无缝压力管高温拉伸测试结果异常原因分析
 2
 Al-4B中间合金对AZ31镁合金晶粒尺寸和力学性能的影响
 2
 CaCO3含量对自保护药芯焊丝脱渣性的影响
 2
 CoCrFeNiWx高熵合金黏结剂对WC硬质合金显微组织和力学性能的影响
 2
 DNS光度法测定风味鱿鱼中淀粉、还原糖和蔗糖的含量
 2
 ER90S-G焊丝接头力学性能出现差异的原因
 2
 F45MnVS非调质钢动态再结晶模型与晶粒尺寸数值模拟
 2
 Fe-Cr-Ni电镀层在工业废水中的腐蚀行为
 2
 Nitronic 50不锈钢低温冲击韧性大幅降低原因分析
 2
 Q345钢热变形奥氏体晶粒尺寸的数值模拟
 2
 Ta2O5-WO3-RO2(R=Zr,Ti)三元系统中的相关系
 2
 TiAl基合金的制备及其摩擦磨损性能
 2
 X射线衍射分析高能喷丸后45钢的表层晶粒尺寸
 2
 箔片动压气体轴承系统中箔片表面涂层材料的测试表征
 2
 不同Si3N4相涂层坩埚中全熔多晶硅锭的制备及表征
 2
 不同成分及热处理态无镍钛基合金的物相组成
 2
 不同厚度电镀铬层的组织及性能
 2
 不同晶粒尺寸和晶向分布多晶硅片弯曲应力的有限元模拟
 2
 不同温度锻压时Inconel 625镍基高温合金的形变量和晶粒尺寸
 2
 超声波对AZ31B镁合金凝固组织和力学性能的影响
 2
 超声处理对铸造7050铝合金热压缩变形行为的影响
 2
 超声-脉冲电铸工艺参数对镍铸层晶粒尺寸的影响
 2
 超塑性TC4钛合金板晶粒的金相显示方法
 2
 超细晶高氮奥氏体不锈钢的制备及其性能
 2
 超细晶粒钢的疲劳性能
 2
 超音速火焰喷涂4种典型WC基金属陶瓷涂层的组织和性能
 2