搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能
          
Preparation and Performance of GNPs-MWCNT Conductive PolymerComposite Materials by Direct Writing 3D Printing

摘    要
以石墨烯纳米片(GNPs)和多壁碳纳米管(MWCNT)为导电填料,以聚氧化乙烯(PEO)聚合物为基体制备得到复合材料薄膜,研究了不同GNPs/MWCNT填充量及配比对复合材料形貌、透光率、导电性和压阻特性的影响。结果表明:随GNPs/MWCNT填充量增加,复合材料表面包覆的PEO聚合物减少,导电填料连通性能增强;填充GNPs/MWCNT后,复合材料透光率降至50%以下,填料质量分数和配比变化对透光性的影响不大;随GNPs/MWCNT填充量和配比增加,复合材料导电性能显著提升;当GNPs/MWCNT填充质量分数为10%、配比(质量比)为1:1时,复合材料压敏性能最优,且其前驱体溶液稳定性较好,连续打印能力优良,能够进行大面积喷印制造。
标    签 柔性压力传感器   复合材料   石墨烯纳米片   多壁碳纳米管   直写3D打印   压阻特性   flexible pressure sensor   composite material   graphene nanosheet   multi-walled carbon nanotube   direct writing 3D printing   piezoresistive property  
 
Abstract
Composite films with graphene nanosheets (GNPs) and multi-walled carbon nanotubes (MWCNT) as conductive fillers and polyethylene oxide (PEO) polymer as matrix were prepared. The effects of different filling content and ratios of GNPs/MWCNT on morphology, light transmittance, electrical conductivity and piezoresistive properties of composite film were studied. The results show that with the increase of GNPs/MWCNT filling content, the PEO polymer on composite material surface decreased, and the connectivity of conductive fillers increased. The light transmittance of composite material was reduced to below 50% after filling with GNPs/MWCNT, and the change of filler mass fraction and ratio had little effect on the light transmittance. The electrical conductivity of composite material was significantly improved with the increase of GNPs/MWCNT filling content and ratio. The composite material showed the best pressure-sensitive performance when the GNPs/MWCNT filling mass fraction was 10% and the mass ratio was 1:1, and the test precursor solution had good stability, excellent continuous printing ability, and could be used for large-area printing.

中图分类号 TH165   DOI 10.11973/jxgccl202011015

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(增材制造技术)

基金项目 广东省基础与应用基础研究基金联合基金资助项目(2019A1515110637);广东省高校青年创新人才项目(2019KQNCX076);岭南师范学院自然科学人才专项(ZL2026)

收稿日期 2020/7/22

修改稿日期 2020/10/6

网络出版日期

作者单位点击查看

备注陈小军(1986-),男,江西瑞金人,讲师,博士

引用该论文: CHEN Xiaojun,HU Cuiwen,CUI Ziyi,MO Deyun,LIAN Haishan,JIANG Shuzhen,GONG Manfeng,LUO Yihui. Preparation and Performance of GNPs-MWCNT Conductive PolymerComposite Materials by Direct Writing 3D Printing[J]. Materials for mechancial engineering, 2020, 44(11): 83~91
陈小军,胡翠雯,崔子怡,莫德云,连海山,江树镇,弓满锋,罗毅辉. 直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能[J]. 机械工程材料, 2020, 44(11): 83~91


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YAN C Y,WANG J X,KANG W B,et al.Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors[J].Advanced Materials,2014,26(13):2022-2027.
 
【2】LIPOMI D J,VOSGUERITCHIAN M,TEE B C K,et al.Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J].Nature Nanotechnology,2011,6(12):788-792.
 
【3】KIM J,SALVATORE G A,ARAKI H,et al.Battery-free,stretchable optoelectronic systems for wireless optical characterization of the skin[J].Science Advances,2016,2(8):e1600418.
 
【4】XU S,ZHANG Y H,JIA L,et al.Soft microfluidic assemblies of sensors,circuits,and radios for the skin[J].Science,2014,344(6179):70-74.
 
【5】JEONG J W,YEO W H,AKHTAR A,et al.Epidermal electronics:materials and optimized designs for human-machine interfaces via epidermal electronics (adv.mater.47/2013)[J].Advanced Materials,2013,25(47):6776.
 
【6】LIM S,SON D,KIM J,et al.Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures[J].Advanced Functional Materials,2015,25(3):375-383.
 
【7】LEE H,CHOI T K,LEE Y B,et al.A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy[J].Nature Nanotechnology,2016,11(6):566-572.
 
【8】BAE W G,KIM D,KWAK M K,et al.Enhanced skin adhesive patch with modulus-tunable composite micropillars[J].Advanced Healthcare Materials,2013,2(1):109-113.
 
【9】KING M G,BARAGWANATH A J,ROSAMOND M C,et al.Porous PDMS force sensitive resistors[J].Procedia Chemistry,2009,1(1):568-571.
 
【10】FAN Y J,MENG X S,LI H Y,et al.Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy[J].Advanced Materials,2017,29(2):1603115.
 
【11】胡圣飞,徐成成,张荣,等.聚合物基柔性导电应力应变复合材料的研究进展[J].高分子材料科学与工程,2017,33(12):156-162.
 
【12】KRAMER R K,MAJIDI C,WOOD R J.Wearable tactile keypad with stretchable artificial skin[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai,China: IEEE,2011:1103-1107.
 
【13】LU N S,LU C,YANG S X,et al.Highly sensitive skin-mountable strain gauges based entirely on elastomers[J].Advanced Functional Materials,2012,22(19):4044-4050.
 
【14】KIM K,LEE K R,LEE D S,et al.A silicon-based flexible tactile sensor for ubiquitous robot companion applications[J].Journal of Physics:Conference Series,2006,34:399-403.
 
【15】PAN L J,CHORTOS A,YU G H,et al.An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J].Nature Communications,2014,5:3002.
 
【16】RAHAMAN M,CHAKI T K,KHASTGIR D.Polyaniline,ethylene vinyl acetate semi-conductive composites as pressure sensitive sensor[J].Journal of Applied Polymer Science,2013,128(1):161-168.
 
【17】CHOONG C L,SHIM M B,LEE B S,et al.Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J].Advanced Materials,2014,26(21):3451-3458.
 
【18】CHOI S,LEE H,GHAFFARI R,et al.Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials[J].Advanced Materials,2016,28(22):4203-4218.
 
【19】HAMMOCK M L,CHORTOS A,TEE B C K,et al.25th anniversary article: The evolution of electronic skin (E-skin):A brief history,design considerations,and recent progress[J].Advanced Materials,2013,25(42):5997-6038.
 
【20】KEN R Y,YEO J C,LIM C T.Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications[J].Microsystems & Nanoengineering,2016,2:16043.
 
【21】任秦博,王景平,杨立,等.用于电阻式柔性应变传感器的导电聚合物复合材料研究进展[J].材料导报,2020,34(1):80-94.
 
【22】CHEN L,CHEN G, LU L.Piezoresistive behavior study on finger-sensing silicone rubber/graphite nanosheet nanocomposites[J].Advanced Functional Materials,2007,17(6):898-904.
 
【23】CHENG M Y,TSAO C M,LAI Y Z,et al.The development of a highly twistable tactile sensing array with stretchable helical electrodes[J].Sensors and Actuators A:Physical,2011,166(2):226-233.
 
相关信息
   标题 相关频次
 钼含量对WC-Co-Ti(C,N)-Ni-Mo硬质合金微观结构及性能的影响
 6
 含板状WC晶粒硬质合金的研究进展
 4
 CFRP层压板的超声检测
 2
 Ti3SiC2/SiC复合材料高温氧化行为研究
 2
 TiCN的添加对WC-Co硬质合金性能的影响
 2
 X射线检测技术在复合材料检测中的应用与发展
 2
 玻璃纤维复合材料板声发射信号传播特性
 2
 镀镍石墨粉表面球化及与铜合金基体界面结合的研究
 2
 多壁碳纳米管-十二烷基苯磺酸钠修饰的碳糊电极为工作电极测定磺胺甲噁唑
 2
 多阵列超声导波频相联控激励下复合材料损伤聚焦成像方法
 2
 风电叶片复合材料弯曲损伤破坏声发射监测
 2
 风力机叶片用复合材料的拉伸及冲蚀磨损性能
 2
 复合材料Lamb波时间反转检测方法研究现状
 2
 复合材料层压板的超声相控阵检测
 2
 复合材料出口导流叶片包边裂纹产生与固有频率下降的原因
 2
 复合材料的双能CT图像融合算法
 2
 复合材料分层缺陷的激光超声检测
 2
 复合材料盒段冲击损伤的成像优化
 2
 复合材料拉伸过程的声发射特性研究
 2
 复合材料在海洋大气环境中的加速环境谱及当量化
 2
 复合材料在输电线路的应用与建议
 2
 工业CT检测工艺参数对复合材料检测图像质量的影响
 2
 固体火箭发动机部件的损伤探测
 2
 固相微萃取-气相色谱-质谱法测定地表水中10种痕量苯系物
 2
 含超材料的结构功能一体化复合材料的超声检测
 2
 红外热波成像技术在复合材料无损检测中的应用
 2
 红外热波检测复合材料时缺陷深度的自动测量
 2
 宏观纤维复合材料及其驱动器的研究与应用
 2
 槲皮素在多壁碳纳米管修饰碳糊电极上的电化学行为及其与脱氧核糖核酸的相互作用
 2
 基于多壁碳纳米管和聚十六烷基三甲基溴化铵修饰玻碳电极的电化学法快速测定水和土壤中双酚A的含量
 2