搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
0.5%石墨烯增强铝基复合材料的热变形行为
          
Thermal Deformation Behavior of 0.5% Graphene ReinforcedAluminum Composite

摘    要
在变形温度330~450℃,应变速率0.01~10 s-1条件下对0.5%(质量分数,下同)石墨烯增强铝基复合材料进行热压缩模拟试验,研究了该复合材料的热变形行为,基于流变数据建立了考虑应变补偿的本构方程,基于动态材料学模型构建了热加工图,确定了优化参数范围并选择一组优化参数进行了材料热挤压有限元模拟。结果表明:复合材料在不同热变形条件下的真应力-应变曲线均呈先上升再下降最后趋于平缓的特征,峰值应力随变形温度的升高或应变速率的减小而减小;复合材料的较优变形温度为410~430℃,应变速率为0.01~0.016 s-1,有限元模拟发现,在变形温度为420℃,应变速率为0.01 s-1条件下可以挤出质量较好的复合材料型材。
标    签 石墨烯增强铝基复合材料   热变形行为   本构方程   热加工图   graphene reinforced aluminum composite   thermal deformation behavior   constitutive equation   thermal processing map  
 
Abstract
Thermal compression simulation tests of 0.5% graphene reinforced aluminum composite were carried out under conditions of deformation temperature of 330-450 ℃ and strain rate of 0.01-10 s-1, and the thermal deformation behavior of the composite was studied. The constitutive equation considering the strain compensation was established with the flow data. The processing map was constructed by the dynamic material model, and the optimal parameter range was determined. The finite element simulation of the thermal extrusion of the material was conducted with a set of optimal parameters. The results show that the true stress-strain curves of the composite under different thermal deformation conditions showed the characteristics of first rise, then fall, and finally tending to be stable. The peak stress decreased with incresing deformation temperature and decreasing strain rate. The optimal deformation temperature of the composite was 410-430 ℃, and the strain rate was 0.01-0.016 s-1. The finite element simulation showed that the extruded composite profiles had relatively good performance at with deformation temperature of 420 ℃ and strain rate of 0.01 s-1.

中图分类号 TG131   DOI 10.11973/jxgccl202012014

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51709295)

收稿日期 2019/12/23

修改稿日期 2020/11/4

网络出版日期

作者单位点击查看

备注娄淑梅(1979-),女,山东东阿人,博士

引用该论文: LOU Shumei,GUO Guangxin,LIU Yongqiang,ZHANG Pingping. Thermal Deformation Behavior of 0.5% Graphene ReinforcedAluminum Composite[J]. Materials for mechancial engineering, 2020, 44(12): 75~79
娄淑梅,郭广鑫,刘永强,张苹苹. 0.5%石墨烯增强铝基复合材料的热变形行为[J]. 机械工程材料, 2020, 44(12): 75~79


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】巩建国,唐彬彬,韩丽.铝基复合材料研究现状[J].热加工工艺,2014,43(4):23-26.
 
【2】LI Z G.Fabrication of in situ TiB2 particulates reinforced zinc alloy matrix composite[J].Materials Letters,2014,121:1-4.
 
【3】曹建刚,庄英菊.Al2O3颗粒增强铝基复合材料热膨胀性能研究[J].热加工工艺,2013,42(4):120-122.
 
【4】WANG W G,XIAO B L,MA Z Y.Interfacial reaction and nanostructures in Mg matrix composites reinforced with carbon fibers modified by sol-gel method[J].Composites Science and Technology,2013,87:69-76.
 
【5】EVEN C,ARVIEU C,QUENISSET J M.Powder route processing of carbon fibres reinforced titanium matrix composites[J].Composites Science and Technology,2008,68(6):1273-1281.
 
【6】MA X C,HE G Q,HE D H,et al.Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J].Wear,2008,265(7/8):1087-1092.
 
【7】NOVOSELOV K,GEIM A,MOROZOV S,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
 
【8】LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
 
【9】BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008,8(3):902-907.
 
【10】郭建亭,周兰章,李谷松.高温结构金属间化合物及其强韧化机理[J].中国有色金属学报,2011,21(1):1-34.
 
【11】赵双赞,燕绍九,陈翔,等.石墨烯纳米片增强铝基复合材料的动态力学行为[J].材料工程,2019,47(3):23-29.
 
【12】RASHAD M,PAN F S,TANG A,et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Progress in Natural Science:Materials International,2014,24(2):101-108.
 
【13】YAN S J,DAI S L,ZHANG X Y,et al.Investigating aluminum alloy reinforced by graphene nanoflakes[J].Materials Science and Engineering:A,2014,612:440-444.
 
【14】苏德权,赵云禄. 铝型材挤压温度范围的选择[J]. 锻压技术,1995(6):12-14.
 
【15】闫亮明,沈健,李周兵,等.7055铝合金高温流变应力特征及本构方程[J]. 特种铸造及有色合金, 2009,29(10):892-895.
 
【16】PRASAD Y V R K.Processing maps:A status report[J].Journal of Materials Engineering and Performance, 2003,12(6):638-645.
 
【17】GEGEL H L. Synthesis of atomistic and continuum modeling to describe microstructure[M]. Lake Buena Uista:Computer Simulation in Materials Science,1986.
 
相关信息
   标题 相关频次
 20Cr2Ni4A钢的高温热变形行为及热加工图
 3
 Al-8.8Zn-1.4Mg-0.5Cu-0.1Sc-0.1Er-0.1Zr合金的热变形行为及热加工图
 3
 FV520B马氏体不锈钢的热变形行为和本构关系
 3
 新型高强轴承钢的热压缩变形行为与热加工图
 3
 10B06冷镦钢连铸坯的热压缩流变行为
 2
 2219铝合金热压缩时的流变应力本构方程
 2
 2524铝合金的蠕变时效行为及本构方程
 2
 40CrNi2MoE钢的高温塑性变形特征
 2
 4Cr5MoSiV1热作模具钢的热变形行为与热加工图
 2
 60Si2CrVAT高强度弹簧钢的热压缩变形本构方程
 2
 60钢热压缩变形行为及其变参数Arrhenius本构方程
 2
 7075/6009铝合金复合材料热压缩变形的本构方程
 2
 AA5083合金在200~525℃的拉伸流变行为
 2
 AZ61镁合金的热压缩变形行为及组织演变
 2
 BT22双相钛合金等温锻造工艺的确定
 2
 C72900铜合金与15-5PH不锈钢的动态力学性能及本构关系
 2
 Fe-0.2C-7Mn中锰钢的单道次热压缩变形行为及热加工图
 2
 Fe-3.0% Si-0.09% Nb取向硅钢的高温流变应力
 2
 HG700汽车大梁钢的热变形行为及流变应力本构模型的建立
 2
 Mg-4Al-2RE合金压缩蠕变本构方程的建立
 2
 TA15合金热变形行为研究
 2
 α+β两相区压缩变形后TC21合金的显微组织模拟
 2
 奥氏体不锈钢的热压缩本构方程及动态再结晶行为
 2
 超声处理对铸造7050铝合金热压缩变形行为的影响
 2
 低成本超高强钛合金的热变形行为与锻造工艺的确定
 2
 低碳钢高温变形行为及其本构方程的建立
 2
 电子束精炼及层覆凝固Inconel 718合金的流变行为及本构方程
 2
 粉末热等静压制备Ti6Al4V合金在α+β两相区的热压缩行为
 2
 工程机械用Q690钢的热变形行为
 2
 基于Johnson-Cook模型构建M50NiL齿轮钢的流变应力本构方程
 2