扫一扫 加微信
首页 > 期刊论文 > 论文摘要
固体颗粒对T型盲管弯头结构冲蚀的数值模拟
          
Numerical Simulation of the Erosion Characteristics of T-shape Blind Elbow by Solid Particles

摘    要
利用欧拉-拉格朗日方法对T型盲管弯头中气固两相流对管壁的冲蚀程度进行三维数值模拟。通过数值模拟分析得到T型盲管弯头中流场分布情况和不同盲管长度时的最大冲蚀速率。结果表明:气体流场在T型盲管弯头后半部分可以形成气体旋涡和气垫,在一定程度上有助于降低固体颗粒对管壁的冲蚀速率。冲蚀速率随着盲管长度增加而减小;但在盲管长度为6倍管径的时候存在拐点;不同盲管长度的T型盲管弯头的最大冲蚀位置均位于盲管的末端,但随着盲管长度的增加最大冲蚀位置逐渐向下偏移;入口速度越大,最大冲蚀速率越大,同时盲管长度对冲蚀速率的影响程度越剧烈;颗粒粒径越大对管壁的冲蚀程度越大。
标    签 T型盲管弯头   多相流   冲蚀速率   盲管长度   颗粒轨迹   T-shape blind elbow   multiphase flow   erosion rate   blind elbow length   particle track  
 
Abstract
Euler-Lagrange method was used to simulate the erosion degree of the gas-solid two-phase flow in a T-shape blind elbow. Through numerical simulation, the flow field distribution in the T-shape blind elbow and the maximum erosion rate in different blind elbow lengths were obtained. The results show that the gas flow field could form a gas vortex in the latter half of the T-shaped blind elbow, which helped to reduce the erosion rate of the solid particles on the wall. The erosion rate decreased with the increase of the length of the blind elbow, the maximum erosion position of the T-type blind tube was located in the end of blind tube. With the increase of the length of the blind tube, the maximum erosion position gradually moved down and there was more influence of the length of the blind elbow on the erosion rate. Also the larger size of the particle, the greater the erosion rate was.

中图分类号 TG174   DOI 10.11973/fsyfh-202101007

 
  中国光学期刊网论文下载说明


所属栏目 数值模拟

基金项目 国家自然科学基金(51874340);山东省自然科学基金(ZR2018MEE004)

收稿日期 2018/12/15

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: CAO Xuewen,ZHANG Yichi,SUN Xiaoyang,QIAO Xin. Numerical Simulation of the Erosion Characteristics of T-shape Blind Elbow by Solid Particles[J]. Corrosion & Protection, 2021, 42(1): 30


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】PENG W S,CAO X W,JI J Y. Erosion of pipe bend and plugged tee by solid particles in oil-water-sand multiphase flow[J]. Corrosion & Protection,2016,37(2):131-136.
 
【2】SALAMA M M,VENKATESH E S. Evaluation of API RP 14E erosional velocity limitations for offshore gas Wells[C]//Offshore Technology Conference. Houston,Texas:Offshore Technology Conference,1983:OTC4485.
 
【3】SALAMA M M. An alternative to API 14E erosional velocity limits for sand laden fluids[C]//Offshore Technology Conference. Houston,Texas:Offshore Technology Conference,1998:OTC8898.
 
【4】BOURGOYNE A T J R. Experimental study of erosion in diverter systems due to sand production[C]//SPE/IADC Drilling Conference. New Orleans:Society of Petroleum Engineers,1989:807-816.
 
【5】FINNIE I,MCFADDEN D H. On the velocity dependence of the erosion of ductile metals by solid particles at low angles of incidence[J]. Wear,1978,48(1):181-190.
 
【6】BITTER J G A. A study of erosion phenomena[J]. Wear,1963,6(3):169-190.
 
【7】LEVY A V. The erosion of structural alloys,cermets and in situ oxide scales on steels[J]. Wear,1988,127(1):31-52.
 
【8】LACKERMEIER U,WERTHER J. Flow phenomena in the exit zone of a circulating fluidized bed[J]. Chemical Engineering and Processing:Process Intensification,2002,41(9):771-783.
 
【9】LIN N. Erosion study on typical fittings in high pressure natural gas pipeline[D]. Beijing:Beijing Jiaotong University,2013.
 
【10】CHEN X H,MCLAURY B S,SHIRAZI S A. Application and experimental validation of a computational fluid dynamics (CFD)-based erosion prediction model in elbows and plugged Tees[J]. Computers & Fluids,2004,33(10):1251-1272.
 
【11】PARSI M,NAJMI K,NAJAFIFARD F,et al. A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. Journal of Natural Gas Science and Engineering,2014,21:850-873.
 
【12】付林. 油煤浆输送管道弯头部位冲击磨损预测与壁厚预测[D]. 天津:河北工业大学,2009.
 
【13】DUARTE C A R,DE SOUZA F J,DOS SANTOS V F. Numerical investigation of mass loading effects on elbow erosion[J]. Powder Technology,2015,283:593-606.
 
【14】CHEN J K,WANG Y S,LI X F,et al. Erosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD-DEM coupling method[J]. Powder Technology,2015,275:182-187.
 
【15】GRANT G,TABAKOFF W. Erosion prediction in turbomachinery resulting from environmental solid particles[J]. Journal of Aircraft,1975,12(5):471-478.
 
【16】FORDER A,THEW M,HARRISON D. A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear,1998,216(2):184-193.
 
【17】SOMMERFELD M,HUBER N. Experimental analysis and modelling of particle-wall collisions[J]. International Journal of Multiphase Flow,1999,25(6/7):1457-1489.
 
相关信息
   标题 相关频次
 油水砂多相流中固体颗粒对弯管及T型堵头管的冲蚀
 4
 常用集输管线钢在CO2多相流中的腐蚀行为
 2
 段塞流下携砂水平弯管的冲蚀试验
 2
 多相混输管道内侧的腐蚀试验
 2
 多相流集输管道腐蚀规律及控制措施
 2
 风力发电机组主轴连接螺栓断裂原因分析
 2
 高温过热器TP347H钢管焊接接头开裂原因
 2
 基于多相流原理的旋风法管道防腐技术应用
 2
 基于灰色关联分析法的湿气管道内腐蚀直接评价方法的应用
 2
 基于压接质量考虑的架空地线断裂原因分析
 2
 立轴混流式水轮机尾水管进人门连接螺栓断裂失效分析
 2
 某海底多相流管线内腐蚀直接评价方法
 2
 某凝析气田L245集输管线失效原因分析
 2
 某气田地面集输管线的腐蚀原因及控制措施
 2
 凝析气田多相流环境下常用油套管钢的CO2腐蚀规律
 2
 一种海底管道多相流内腐蚀直接评价的方法
 2
 基于有限元法分析Ti-6Al-4V合金的冲蚀行为
 1