搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
Zr-Nb系合金在360 ℃/20 MPa溶氧水中的腐蚀行为
          
Corrosion Behavior of Zr-Nb Alloys in 360 ℃/20 MPa Water with Dissolved Oxygen

摘    要
通过高温高压(360℃/20 MPa)动态循环水回路系统,研究了在含1.5 mg/L溶解氧的水中,Zr-Nb系合金(M5和E110)的早期腐蚀行为。利用透射电子显微镜(TEM)分析了两种锆合金氧化膜的显微特性,以及氧化膜/基体(O/M)界面特性和靠近界面处β-Nb相的腐蚀行为。结果表明:腐蚀60 d后M5与E110合金表面的氧化膜厚度分别为3.2 μm与2.1 μm。M5合金的腐蚀已经发生转折,而E110合金的未发生转折。两种合金O/M界面处的结构有很大差异,在E110合金的O/M界面处存在ZrO过渡层,这与其氧化膜较慢的生长速率相关。两种合金中靠近O/M界面处的β-Nb相均被部分氧化,溶解氧(DO)可以加速β-Nb相的氧化。
标    签 锆合金   腐蚀   溶解氧   显微组织   腐蚀行为   zirconium alloy   corrosion   dissolved oxygen   microstructure   corrosion behavior  
 
Abstract
Early corrosion behavior of Zr-Nb alloys (M5 and E110) in 1.5 mg/L dissolved oxygen water was studied through a high temperature and high pressure (360 ℃/20 MPa) dynamic circulating water loop system. The microscopic characteristics of oxide films of two zirconium alloys, oxide film/matrix (O/M) interface characteristics and corrosion behavior of β-Nb phase near interface were analyzed by transmission electron microscopy (TEM). The results show that the thicknesses of the oxide films on the surface of M5 and E110 alloys reached 3.2 μm and 2.1 μm respectivly, after corrosion of 60 days. The corrosion of M5 alloy had already turned, while that of E110 alloy had not. The structures of O/M interface of the two alloys were very different. There was a ZrO transition layer at the O/M interface of E110, which was related to the slower growth rate of the oxide film. The β-Nb phases near the O/M interface in oxide films of the two alloys were partially oxidized, and dissolved oxygen (DO) could accelerate the oxidation of β-Nb phase.

中图分类号 TG174   DOI 10.11973/fsyfh-202103001

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国家重点研发计划(2018YFB1900405)

收稿日期 2019/5/21

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: ZHANG Hao,LIU Zhu,LAI Ping,GUO Xianglong,ZHANG Lefu. Corrosion Behavior of Zr-Nb Alloys in 360 ℃/20 MPa Water with Dissolved Oxygen[J]. Corrosion & Protection, 2021, 42(3): 1


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】曾奇锋,朱丽兵,袁改焕,等. CAP1400燃料组件用新锆合金研究[J]. 核技术,2017,40(3):61-67.
 
【2】BEIE H,MITWALSKY A,GARZAROLLI F,et al. Examinations of the corrosion mechanism of zirconium alloys[C]//Zirconium in the nuclear industry:Tenth International Symposium. West Conshohocken,PA:ASTM International,1994:615-643.
 
【3】QIN W,NAM C,LI H L,et al. Tetragonal phase stability in ZrO2 film formed on zirconium alloys and its effects on corrosion resistance[J]. Acta Materialia,2007,55(5):1695-1701.
 
【4】杨文斗. 反应堆材料学(修订版)[M]. 北京:原子能出版社,2006.
 
【5】李中奎. 有金属材料与工程[J]. 1999;28(2):101.
 
【6】刘文庆,李强,周邦新. 锆锡合金腐蚀转折机理的讨论[J]. 稀有金属材料与工程,2001,30(2):81-84.
 
【7】YILMAZBAYHAN A,BREVAL E,MOTTA A T,et al. Transmission electron microscopy examination of oxide layers formed on Zr alloys[J]. Journal of Nuclear Materials,2006,349(3):265-281.
 
【8】NI N,LOZANO-PEREZ S,SYKES J,et al. Quantitative EELS analysis of zirconium alloy metal/oxide interfaces[J]. Ultramicroscopy,2011,111(2):123-130.
 
【9】NI N,HUDSON D,WEI J,et al. How the crystallography and nanoscale chemistry of the metal/oxide interface develops during the aqueous oxidation of zirconium cladding alloys[J]. Acta Materialia,2012,60(20):7132-7149.
 
【10】PROFF C,ABOLHASSANI S,LEMAIGNAN C. Oxidation behaviour of zirconium alloys and their precipitates-A mechanistic study[J]. Journal of Nuclear Materials,2013,432(1/2/3):222-238.
 
【11】TEJLAND P,ANDRÉN H O. Origin and effect of lateral cracks in oxide scales formed on zirconium alloys[J]. Journal of Nuclear Materials,2012,430(1/2/3):64-71.
 
【12】KIM H G,CHOI B K,PARK J Y,et al. Analysis of oxidation behavior of the β-Nb phase formed in Zr-1.5Nb alloy by using the HVEM[J]. Journal of Alloys and Compounds,2009,481(1/2):867-871.
 
【13】王荣山,柏广海,翁立奎,等. 含Nb锆合金第二相及其与腐蚀行为关系研究进展[J]. 稀有金属材料与工程,2014,43(12):3188-3192.
 
【14】COX B. Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys[J]. Journal of Nuclear Materials,2005,336(2/3):331-368.
 
【15】ZHOU B X,YAO M Y,LI Z K,et al. Optimization of N18 zirconium alloy for fuel cladding of water reactors[J]. Journal of Materials Science & Technology,2012,28(7):606-613.
 
【16】BOJINOV M,KARASTOYANOV V,KINNUNEN P,et al. Influence of water chemistry on the corrosion mechanism of a zirconium-niobium alloy in simulated light water reactor coolant conditions[J]. Corrosion Science,2010,52(1):54-67.
 
【17】KUMAR M K,AGGARWAL S,KAIN V,et al. Effect of dissolved oxygen on oxidation and hydrogen pick up behaviour-Zircaloy vs Zr-Nb alloys[J]. Nuclear Engineering and Design,2010,240(5):985-994.
 
【18】韦天国,林建康,龙冲生,等. 蒸汽中的溶解氧对锆合金腐蚀行为的影响[J]. 金属学报,2016,52(2):209-216.
 
【19】CHOO K N,KANG Y H,PYUN S I,et al. Effect of composition and heat treatment on the microstructure and corrosion behavior of Zr-Nb alloys[J]. Journal of Nuclear Materials,1994,209(3):226-235.
 
【20】MOTTA A T. Waterside corrosion in zirconium alloys[J]. Journal of the Minerals,Metals&Materials Society,2011,63(8):59-63.
 
【21】YAO M Y,GAO C Y,HUANG J,et al. Oxidation behavior of β-Nb precipitates in Zr-1Nb-0.2Bi alloy corroded in lithiated water at 360℃[J]. Corrosion Science,2015,100:169-176.
 
【22】PREUSS M, FRANKEL P,LOZANO-PEREZ S,et al. Studies regarding corrosion mechanisms in zirconium alloys[J]. Journal of ASTM International,2011,8(9):103246.
 
【23】GRIGGS B,MAFFEI H P,SHANNON D W. Multiple rate transitions in the aqueous corrosion of zircaloy[J]. Journal of the Electrochemical Society,1962,109(8):665.
 
【24】TEJLAND P,THUVANDER M,ANDRÉN H O,et al. Detailed analysis of the microstructure of the metal/oxide interface region in zircaloy-2 after autoclave corrosion testing[C]//Zirconium in the Nuclear Industry:16th International Symposium. West Conshohocken,PA:ASTM International,2011:595-619.
 
【25】HU J,GARNER A,NI N,et al. Identifying suboxide grains at the metal-oxide interface of a corroded Zr-1.0% Nb alloy using (S) TEM,transmission-EBSD and EELS[J]. Micron,2015,69:35-42.
 
【26】YARDLEY S S,MOORE K L,NI N,et al. An investigation of the oxidation behaviour of zirconium alloys using isotopic tracers and high resolution SIMS[J]. Journal of Nuclear Materials,2013,443(1/2/3):436-443.
 
【27】ANADA H,TAKEDA K. Microstructure of oxides on zircaloy-4,1.0Nb zircaloy-4,and zircaloy-2 formed in 10.3-MPa steam at 673 K[C]//Zirconium in the Nuclear Industry:Eleventh International Symposium. West Conshohocken,PA:ASTM International,1996:35-54.
 
【28】BOSSIS P,LELIÈVRE G,BARBERIS P,et al. Multi-scale characterization of the metal-oxide interface of zirconium alloys[C]//Zirconium in the Nuclear Industry:Twelfth International Symposium. West Conshohocken,PA:ASTM International,2000:918-918-27.
 
【29】MARDON J P,GARNER G L,HOFFMANN P B. M5® a breakthrough in Zr alloy[C]//Proceedings of International Conference on Light Water Reactor Fuel Performance (Top Fuel 2010), La Grange Park,IL:ANS,2010.
 
【30】GODLEWSKI J,BOUVIER P,LUCAZEAU G,et al. Stress distribution measured by Raman spectroscopy in zirconia films formed by oxidation of Zr-based alloys[C]//Zirconium in the Nuclear Industry:Twelfth International Symposium. West Conshohocken,PA:ASTM International,2000:877-877-24.
 
【31】刘建章. 核结构材料[M]. 北京:化学工业出版社,2007.
 
【32】周邦新,李强,姚美意,等. 锆-4合金在高压釜中腐蚀时氧化膜显微组织的演化[J]. 核动力工程,2005,26(4):364-371.
 
相关信息
   标题 相关频次
 316L奥氏体不锈钢在高温水中的应力腐蚀
 8
 Zr-2.5Nb压力管材的氧化腐蚀行为影响因素
 8
 表面粗糙度对800H合金在超临界水环境中腐蚀行为的影响
 6
 超临界二氧化碳环境中800H合金的均匀腐蚀行为
 6
 GH4169合金晶粒度检验试样腐蚀新方法
 4
 Q345R钢在含单质硫地层水中的腐蚀行为
 4
 Sr对AZ31B镁合金微观组织和腐蚀性能的影响
 4
 Zr-0.8Sn-0.35Nb-0.4Fe-0.1Cr-xBi合金在400 ℃过热蒸汽中的腐蚀行为
 4
 Zr-Sn-Nb-Fe-Mo合金在高温高压水中的腐蚀行为
 4
 奥氏体不锈钢在海水环境中的腐蚀疲劳裂纹扩展行为
 4
 高矿化度油田污水处理系统的腐蚀因素分析及治理措施
 4
 核电厂板式热交换器的泄漏原因
 4
 晶界碳化物和冷变形对600合金应力腐蚀开裂的影响规律
 4
 某电厂3号机组发电机内冷水系统碱性富氧运行工况评价
 4
 某水套加热炉盘管腐蚀原因
 4
 燃气余热锅炉高压蒸发器管SA210钢焊缝腐蚀特征分析
 4
 溶解氧浓度对船体钢在海水中腐蚀行为的影响
 4
 生物柴油原料中溶解氧对20R钢的腐蚀
 4
 胜利油田孤六联合站污水腐蚀与防护措施
 4
 微量硫对Zr-4合金在360 ℃ LiOH水溶液中耐腐蚀性能的影响
 4
 乙醇胺对碳钢腐蚀性能的影响
 4
 原位自生TiC与TiB增强钛基复合材料的组织和力学性能
 4
 12Cr-F/M钢在超临界水中的腐蚀行为
 3
 P92钢在超临界水中的腐蚀行为
 3
 不同时效状态新型Al-Cu-Li系合金腐蚀的电化学阻抗谱
 3
 工艺和组织对桥梁钢在模拟海洋飞溅区环境中腐蚀行为的影响
 3
 近海含SO2环境中高压隔离开关铝合金部件的组织及腐蚀特征
 3
 利用直流电压法在线测试碳钢的流动加速腐蚀减薄速率
 3
 秦始皇兵马俑坑出土青铜兵器的锈蚀形态和特征
 3
 在线测试碳钢流动加速腐蚀减薄速率的直流电压法
 3