搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
碳点在食品安全检测中的应用
          
Application of Carbon Dots in Food Safety Detection

摘    要
综述了碳点(CDs)的荧光性质(包括荧光产生机理、激发光/酸度依赖性、化学稳定性、抗光漂白性和上转换荧光)、合成方法(水热合成法、溶剂热法、超声波振荡法和微波消解法),重点讨论了其在食品安全检测中的应用,包括对重金属离子、合法和违禁食品添加剂、农药和兽药残留、食品中营养成分和病原体的检测,并对CDs发展趋势进行了展望(引用文献86篇)。
标    签 碳点   荧光性质   合成方法   食品安全检测   综述   carbon dot   fluorescence property   synthetic method   food safety testing   review  
 
Abstract
Fluorescence properties of CDs (including fluorescence mechanism, excitation light/acidity dependence, chemical stability, resistance to photobleaching and upconversion fluorescence) and synthetic methods (including hydrothermal synthesis, solvent hot method, ultrasonic oscillation and microwave digestion) were reviewed. The focus was placed on the discussion of its application in the food safety testing, including heavy metal ions, legal and illegal food additives, pesticides and veterinary drug residues, food nutrition and pathogen detection, and the development trend was prospected for CDs (86 ref. cited).

中图分类号 O65   DOI 10.11973/lhjy-hx202105009

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目

收稿日期 2020/7/17

修改稿日期

网络出版日期

作者单位点击查看


备注邓晨,硕士,主要从事在食品安全检测方面的应用研究工作

引用该论文: DENG Chen,ZHOU Hualan,LIANG Yingfang,WANG Feng,ZHANG Jianguo. Application of Carbon Dots in Food Safety Detection[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2021, 57(5): 427~435
邓晨,周化岚,梁营芳,王锋,张建国. 碳点在食品安全检测中的应用[J]. 理化检验-化学分册, 2021, 57(5): 427~435


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YE S L, HUANG J J, LUO L, et al. Preparation of carbon dots and their application in food analysis as signal probe[J]. Chinese Journal of Analytical Chemistry, 2017,45(10):1571-1581.
 
【2】XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004,126(40):12736-12737.
 
【3】SHI X B, WEI W, FU Z D, et al. Review on carbon dots in food safety applications[J]. Talanta, 2019,194:809-821.
 
【4】魏伟,石星波,邓放明.碳量子点合成及其在食品检测中的应用[J].食品科学, 2017,38(15):256-264.
 
【5】QU J H, WEI Q, SUN D W. Carbon dots:Principles and their applications in food quality and safety detection[J]. Critical Reviews in Food Science and Nutrition, 2018,58(14):2466-2475.
 
【6】ZHU S J, ZHANG J H, QIAO C Y, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chemical Communications, 2011,47(24):6858-6860.
 
【7】DE B, KARAK N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice[J]. RSC Advances, 2013,3(22):8286-8290.
 
【8】GHOSH S, CHIZHIK A M, KAREDLA N, et al. Photoluminescence of carbon nanodots:Dipole emission centers and electron-phonon coupling[J]. Nano Letters, 2014,14(10):5656-5661.
 
【9】WU M B, WANG Y, WU W T, et al. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke[J]. Carbon, 2014,78:480-489.
 
【10】GUDE V, DAS A, CHATTERJEE T, et al. Molecular origin of photoluminescence of carbon dots:Aggregation-induced orange-red emission[J]. Physical Chemistry Chemical Physics:PCCP, 2016,18(40):28274-28280.
 
【11】SONG Y B, ZHU S J, ZHANG S T, et al. Investigation from chemical structure to photoluminescent mechanism:A type of carbon dots from the pyrolysis of citric acid and an amine[J]. Journal of Materials Chemistry C, 2015,3(23):5976-5984.
 
【12】SCHNEIDER J, RECKMEIER C J, XIONG Y, et al. Molecular fluorescence in citric acid-based carbon dots[J]. The Journal of Physical Chemistry C, 2017,121(3):2014-2022.
 
【13】DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2016,10(1):484-491.
 
【14】BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots:Surface-state energy-gap tuning[J]. Advanced Materials, 2015,27(10):1663-1667.
 
【15】WANG Y Y, LI Y, YAN Y, et al. Luminescent carbon dots in a new magnesium aluminophosphate zeolite[J]. Chemical Communications, 2013,49(79):9006-9008.
 
【16】ZHENG B Z, LIU T, PAAU M C, et al. One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission[J]. RSC Advances, 2015,5(15):11667-11675.
 
【17】LI Z, YU H J, BIAN T, et al. Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions[J]. Journal of Materials Chemistry C, 2015,3(9):1922-1928.
 
【18】CAI L, FU Z, CUI F. Synthesis of carbon dots and their application as turn off-on fluorescent sensor for mercury(Ⅱ) and glutathione[J]. Journal of Fluorescence, 2020,30(1):11-20.
 
【19】TONG L L, WANG X X, CHEN Z Z, et al. One-step fabrication of functional carbon dots with 90% fluorescence quantum yield for long-term lysosome imaging[J]. Analytical Chemistry, 2020,92(9):6430-6436.
 
【20】ZUO P L, LU X H, SUN Z G, et al. A review on syntheses, properties, characterization and bioanaly-tical applications of fluorescent carbon dots[J]. Microchimica Acta, 2016,183(2):519-542.
 
【21】QIAN Z S, MA J J, SHAN X Y, et al. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform[J]. Chemistry-A European Journal, 2014,20(8):2254-2263.
 
【22】SHI L H, LI Y Y, LI X F, et al. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells[J]. Biosensors and Bioelectronics, 2016,77:598-602.
 
【23】DUTTA C S, CHETHODIL J M, GHARAT P M, et al. pH-elicited luminescence functionalities of carbon dots:Mechanistic insights[J]. The Journal of Physical Chemistry Letters, 2017,8(7):1389-1395.
 
【24】JIN X Z, SUN X B, CHEN G, et al. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells[J]. Carbon, 2015,81:388-395.
 
【25】WANG C X, XU Z Z, CHENG H, et al. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 2015,82:87-95.
 
【26】JIA X F, LI J, WANG E K. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence[J]. Nanoscale, 2012,4(18):5572-5575.
 
【27】MA Z, MING H, HUANG H, et al. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability[J]. New Journal of Chemistry, 2012,36(4):861-864.
 
【28】PEI S P, ZHANG J, GAO M P, et al. A facile hydrothermal approach towards photoluminescent carbon dots from amino acids[J]. Journal of Colloid and Interface Science, 2015,439:129-133.
 
【29】LIU M L, CHEN B B, LIU Z X, et al. Highly selective and sensitive detection of 2,4,6-trinitrophenol by using newly developed blue-green photoluminescent carbon nanodots[J]. Talanta, 2016,161:875-880.
 
【30】WEN X P, SHI L H, WEN G M, et al. Green and facile synthesis of nitrogen-doped carbon nanodots for multicolor cellular imaging and Co2+ sensing in living cells[J]. Sensors and Actuators B:Chemical, 2016,235:179-187.
 
【31】WANG B G, TANG W W, LU H S, et al. Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness[J]. Journal of Materials Science, 2015,50(16):5411-5418.
 
【32】ZHUO Y, MIAO H, ZHONG D, et al. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging[J]. Materials Letters, 2015,139:197-200.
 
【33】柳明,左玥华,杨磊,等.上转换发光技术在国内食品污染物检测中的研究进展[J].食品研究与开发, 2020,41(10):198-206.
 
【34】LUO X L, HAN Y, CHEN X M, et al. Carbon dots derived fluorescent nanosensors as versatile tools for food quality and safety assessment:A review[J]. Trends in Food Science & Technology, 2020,95:149-161.
 
【35】黄启同,林小凤,李飞明,等.碳量子点的合成与应用[J].化学进展, 2015,27(11):1604-1614.
 
【36】SHARMA S, UMAR A, SOOD S, et al. Photoluminescent C-dots:An overview on the recent development in the synthesis, physiochemical properties and potential applications[J]. Journal of Alloys and Compounds, 2018,748:818-853.
 
【37】YAN F Y, KONG D P, LUO Y M, et al. Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(Ⅱ)[J]. Microchimica Acta, 2016,183(5):1611-1618.
 
【38】ZHANG B, LIU C Y, LIU Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles[J]. European Journal of Inorganic Chemistry, 2010,2010(28):4411-4414.
 
【39】CHAUDHARY V, BHOWMICK A K. Green synthesis of fluorescent carbon nanoparticles from lychee (Litchi chinensis) plant[J]. Korean Joumal of Chemical Engineering, 2015,32(8):1707-1711.
 
【40】KRYSMANN M J, KELARAKIS A, DALLAS P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission[J]. Journal of the American Chemical Society, 2012,134(2):747-750.
 
【41】YUAN F L, YUAN T, SUI L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nature Communications, 2018,9(1):2249-2249.
 
【42】SHAN X Y, CHAI L J, MA J J, et al. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection[J]. The Analyst, 2014,139(10):2322-2325.
 
【43】QIAN Z S, SHAN X Y, CHAI L J, et al. Si-doped carbon quantum dots:A facile and general preparation strategy, bioimaging application, and multifunctional sensor[J]. ACS Applied Materials & Interfaces, 2014,6(9):6797-6805.
 
【44】WU H Y, MI C C, HUANG H Q, et al. Solvothermal synthesis of green-fluorescent carbon nanoparticles and their application[J]. Journal of Luminescence, 2012,132(6):1603-1607.
 
【45】ZHANG Y Q, MA D K, ZHUANG Y, et al. One-pot synthesis of N-doped carbon dots with tunable luminescence properties[J]. Journal of Materials Chemistry, 2012,22(33):16714-16718.
 
【46】LI H T, HE X D, LIU Y, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon, 2011,49(2):605-609.
 
【47】ZHU H, WANG X, LI Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chemical Communications (Cambridge, England), 2009(34):5118-5120.
 
【48】LIU C J, ZHANG P, TIAN F, et al. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging[J]. Journal of Materials Chemistry, 2011,21(35):13163-13167.
 
【49】CHOI Y, THONGSAI N, CHAE A, et al. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots[J]. Journal of Industrial and Engineering Chemistry, 2017,47:329-335.
 
【50】MALIK A K, BLASCO C, PICÓ Y. Liquid chromatography-mass spectrometry in food safety[J]. Journal of Chromatography A, 2010,1217(25):4018-4040.
 
【51】PATEL P D. (Bio)sensors for measurement of analytes implicated in food safety:A review[J]. TrAC Trends in Analytical Chemistry, 2002,21(2):96-115.
 
【52】PICÓ Y, FONT G, JOSÉ RUIZ M, et al. Control of pesticide residues by liquid chromatography-mass spectrometry to ensure food safety[J]. Mass Spectrometry Reviews, 2006,25(6):917-960.
 
【53】RODRÍGUEZ-LÁZARO D, LOMBARD B, SMITH H, et al. Trends in analytical methodology in food safety and quality:Monitoring microorganisms and genetically modified organisms[J]. Trends in Food Science & Technology, 2007,18(6):306-319.
 
【54】YANG X M, ZHUO Y, ZHU S S, et al. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging[J]. Biosensors and Bioelectronics, 2014,60:292-298.
 
【55】ZHU X X, JIN H, GAO C L, et al. Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites[J]. Talanta, 2017,162:65-71.
 
【56】HOU Y X, LU Q J, DENG J H, et al. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion[J]. Analytica Chimica Acta, 2015,866:69-74.
 
【57】LIN Z, XUE W, CHEN H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J]. Analytical Chemistry, 2011,83(21):8245-8251.
 
【58】YUAN Y S, ZHAO X, QIAO M, et al. Determination of sunset yellow in soft drinks based on fluorescence quenching of carbon dots[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2016,167:106-110.
 
【59】XU H, YANG X P, LI G, et al. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples[J]. Journal of Agricultural and Food Chemistry, 2015,63(30):6707-6714.
 
【60】HU X T, SHI J Y, SHI Y Q, et al. Use of a smartphone for visual detection of melamine in milk based on Au@Carbon quantum dots nanocomposites[J]. Food Chemistry, 2019,272:58-65.
 
【61】SU A M, ZHONG Q M, CHEN Y Y, et al. Preparation of carbon quantum dots from cigarette filters and its application for fluorescence detection of Sudan I[J]. Analytica Chimica Acta, 2018,1023:115-120.
 
【62】HU Y, GAO Z. Sensitive detection of Sudan dyes using tire-derived carbon dots as a fluorescent sensor[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020,239:118514.
 
【63】YANG X X, GUO Y Z, LIANG S, et al. Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment[J]. Journal of Materials Chemistry B, 2020,8(47):10788-10796.
 
【64】ZHOU J W, ZOU X M, SONG S H, et al. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues[J]. Journal of Agricultural and Food Chemistry, 2018,66(6):1307-1319.
 
【65】ZHANG D W, TANG J Q, LIU H L. Rapid determination of lambda-cyhalothrin using a fluorescentprobebasedon ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers[J]. Analytical and Bioanalytical Chemistry, 2019,411(20):5309-5316.
 
【66】CHANG M M F, GINJOM I R, NG S M. Single-shot ‘turn-off’ optical probe for rapid detection of paraoxon-ethyl pesticide on vegetable utilising fluorescence carbon dots[J]. Sensors and Actuators B:Chemical, 2017,242:1050-1056.
 
【67】FU Y Z, ZHAO S J, WU S L, et al. A carbon dots-based fluorescent probe for turn-on sensing of ampicillin[J]. Dyes and Pigments, 2020,172:107846.
 
【68】RAKSAWONG P, NURERK P, CHULLASAT K, et al. A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin[J]. Mikrochimica Acta, 2019,186(6):338.
 
【69】LIU C, NING D H, ZHANGC, et al. Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions[J]. ACS Applied Materials & Interfaces, 2017,9(22):18897-18903.
 
【70】MIAO H, WANG Y Y, YANG X M. Carbon dots derived from tobacco for visually distinguishing and detecting three kinds of tetracyclines[J]. Nanoscale, 2018,10(17):8139-8145.
 
【71】TANG H B, ZHU C H, MENG G W, et al. Review-surface-enhanced Raman scattering sensors for food safety and environmental monitoring[J]. Journal of the Electrochemical Society, 2018,165(8):3098-3118.
 
【72】SPECTOR D, LABARRE J, TOLEDANO M B. A genetic investigation of the essential role of glutathione:Mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast[J]. The Journal of Biological Chemistry, 2001,276(10):7011-7016.
 
【73】XU Y L, NIU X Y, ZHANG H J, et al. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor[J]. Journal of Agricultural and Food Chemistry, 2015,63(6):1747-1755.
 
【74】YANG C L, WANG X, LIU H Y, et al. On-off-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride (g-C3N4)-Cu2+ strategy[J]. New Journal of Chemistry, 2017,41(9):3374-3379.
 
【75】FU X, SHENG L, YU Y S, et al. Rapid and universal detection of ovalbumin based on N,O,P-co-doped carbon dots-fluorescence resonance energy transfer technology[J]. Sensors and Actuators B:Chemical, 2018,269:278-287.
 
【76】PURBIA R, PARIA S. A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots[J]. Biosensors and Bioelectronics, 2016,79:467-475.
 
【77】LI S P, QIAO C F, CHEN Y W, et al. A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of Panax notoginseng used as a functional food[J]. Journal of Chromatography A, 2013,1313:302-307.
 
【78】LIU H L, KAO T H, SHIAU C Y, et al. Functional components in Scutellariabarbata D. Don with anti-inflammatory activity on RAW 264.7 cells[J]. Journal of Food and Drug Analysis, 2018,26(1):31-40.
 
【79】YANG H, YANG L, YUAN Y S, et al. A portable synthesis of water-soluble carbon dots for highly sensitive and selective detection of chlorogenic acid based on inner filter effect[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018,189:139-146.
 
【80】KVASNI KA F, OPÍKOVÁ J, ŠEV ÍK R, et al. Determination of phenolic acids by capillary zone electrophoresis and HPLC[J]. Central European Journal of Chemistry, 2008,6(3):410-418.
 
【81】ZHANG J Y, WANG Z J, LI Y, et al. A strategy for comprehensive identification of sequential constituents using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer,application study on chlorogenic acids in Flos Lonicerae Japonicae[J]. Talanta, 2016,147:16-27.
 
【82】FERRARIO C, LUGLI G A, OSSIPRANDI M C, et al. Next generation sequencing-based multigene panel for high throughput detection of food-borne pathogens[J]. International Journal of Food Microbiology, 2017,256:20-29.
 
【83】NYACHUBA D G. Foodborne illness:is it on the rise?[J]. Nutrition Reviews, 2010,68(5):257-269.
 
【84】WENG C I, CHANG H T, LIN C H, et al. One-step synthesis of biofunctional carbon quantum dots for bacterial labeling[J]. Biosensors and Bioelectronics, 2015,68:1-6.
 
【85】CHANDRA S, CHOWDHURI A R, MAHTO T K, et al. One-step synthesis of amikacin modified fluorescent carbon dots for the detection of Gram-negative bacteria like Escherichia coli[J]. RSC Advances, 2016,6(76):72471-72478.
 
相关信息
   标题 相关频次
 表面增强拉曼光谱法测定牛奶中青霉素G钠的残留量
 8
 表面增强拉曼光谱技术在食品安全检测中的应用
 6
 基于适体修饰的金纳米粒子分光光度法测定牛奶中妥布霉素的残留量
 6
 基于金纳米粒子光学性质的比色传感器及其在食品安全检测中的应用
 3
 X射线荧光光谱法分析液体样品中微量元素的预富集方法
 2
 X射线荧光光谱法在标准中的应用
 2
 爆炸物检测用化学传感器的研究进展
 2
 苯系物的色谱分析方法的研究进展
 2
 铋的光度法分析进展
 2
 铋系光电材料及其在化学传感器中的应用
 2
 表面增强拉曼散射光谱法在环境污染物检测中的应用
 2
 铂基非酶葡萄糖传感器的研究进展
 2
 采用双层辉光等离子技术在420不锈钢表面制备ZrO2改性层
 2
 草甘膦分析方法的研究进展
 2
 茶叶中农药残留测定中前处理技术的研究进展
 2
 场(厂)内机动车辆无损检测技术
 2
 超快伏安法研究进展
 2
 持久性有机污染物电化学分析的研究进展
 2
 磁巴克豪森噪声技术的发展现状
 2
 磁性固相萃取在食品安全检测中的应用进展
 2
 雌二醇分子印迹技术研究与应用
 2
 单糖和二糖的定量分析的研究进展
 2
 低压离子色谱法及其应用
 2
 地质样品中氯的测定方法的近期进展
 2
 地质样品中总锡测定方法的研究进展
 2
 电分析化学法检测食品中有机合成色素的应用进展
 2
 电感耦合等离子体原子发射光谱法分析中有机溶剂效应
 2
 电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法检测药品中元素杂质的研究进展
 2
 电感耦合等离子体原子发射光谱法及电感耦合等离子体质谱法在二次资源分析中的应用进展
 2
 电感耦合等离子体原子发射光谱法在环境分析中的应用
 2