搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高钒合金型内熔化扩散温度场及钒含量分布模拟
          
Temperature Field and Vanadium Content Distribution Simulation ofHigh-Vanadium Alloy In-mold Melting Diffusion

摘    要
利用ANSYS软件建立V9Cr4高钒合金型内熔化扩散有限元模型,模拟了浇铸5CrNiMo合金液后凝固过程中高钒合金棒不同位置处的温度;基于合金棒轴向温度变化不大的模拟结果,将合金元素的三维扩散简化成二维扩散,建立径向钒元素含量分布数学模型,计算了径向钒元素含量并进行了试验验证。结果表明:浇铸时合金棒的温度高于其固相线温度,说明高钒合金棒与5CrNiMo合金能实现冶金结合;由温度分布曲线确定钒元素的扩散时间为810 s,将其代入钒元素含量分布数学模型,计算得到的不同位置处钒元素含量与测试结果的相对误差小于1%,说明建立的型内熔化扩散有限元模型较为准确,可以利用其模拟结果来计算钒元素含量分布。
标    签 合金型内熔化扩散   温度场   元素扩散   alloy in-mold melting diffusion   temperature field   element diffusion  
 
Abstract
A finite element model of in-mold melting diffusion of V9Cr4 high-vanadium alloy was established with ANSYS software, and then the temperature change at different spots in the high-vanadium alloy rod was simulated during solidification after casting 5CrNiMo alloy liquid. According to the simulation that the axial temperature of the alloy rod changed little, the three-dimensional diffusion of alloy elements was simplified to two-dimensional diffusion, and the mathematical model for vanadium content distribution along radial direction was established. The vanadium content along radial direction was calculated and was verified by experiments. The results show that the temperatures of the alloy rod were higher than its solidus temperature during casting, indicating the metallurgical bonding between the high-vanadium alloy and 5CrNiMo alloy. The diffusion time of vanadium was determined to be 810 s from the temperature distribution curve. This diffusion time was substituted into the mathematical model for vanadium content distribution and then the vanadium content at different spots was obtained. The relative errors between the calculated content and the testing results were less than 1%, indicating that the established finite element model of in-mold melting diffusion was accurate, and its simulation could be used to calculate the vanadium content distribution.

中图分类号 TG27   DOI 10.11973/jxgccl202105013

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 武汉华夏理工学院科研基金资助项目(18019)

收稿日期 2020/5/11

修改稿日期 2021/3/5

网络出版日期

作者单位点击查看

备注余世浩(1956-),男,湖北松滋人,教授,硕士

引用该论文: YU Shihao,LI Jiaqi,ZHANG Linlang. Temperature Field and Vanadium Content Distribution Simulation ofHigh-Vanadium Alloy In-mold Melting Diffusion[J]. Materials for mechancial engineering, 2021, 45(5): 71~75
余世浩,李佳琪,张琳琅. 高钒合金型内熔化扩散温度场及钒含量分布模拟[J]. 机械工程材料, 2021, 45(5): 71~75


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】YU S H,WEI X P,ZENG H.Preparation of wear resistant materials by melting and diffusion process[J].Journal of Wuhan University of Technology (Mater Sci Ed),2012,27(6):1072-1076.
 
【2】赵维民,李海鹏,胡爱文,等.铸件凝固过程的温度场模拟及缩孔、变形和热裂缺陷的预测[J].中国铸造装备与技术,2003(1):1-4. ZHAO W M,LI H P,HU A W,et al.Simulation of temperature field in solidification and forecast of shrink hole,deformation and hot crack[J].China Foundry Machinery & Technology,2003(1):1-4.
 
【3】崔浩,王智民.导风叶轮低压铸造温度场有限元模拟及应用[J].热加工工艺,2007,36(5):91-94. CUI H,WANG Z M.Numerical simulation and application of low-pressure casting temperature field on Al-alloy hub[J]. Hot Working Technology,2007,36(5):91-94.
 
【4】邱逊,吴振卿.液-固双金属复合铸造结合界面温度场的模拟[J].铸造设备研究,2008(2):29-31. QIU X,WU Z Q.Temperature field simulation of the liquid-solid interface bimetal composite casting[J].Research Studies on Foundry Equipment,2008(2):29-31.
 
【5】余世浩,尉雪萍,曾辉.型内熔化合金元素扩散的浓度方程及仿真[J].武汉理工大学学报,2011,33(6):17-20. YU S H,WEI X P,ZENG H.Study on the concentration equation and simulation of alloy elements in the melting and diffusion process[J].Journal of Wuhan University of Technology,2011,33(6):17-20.
 
【6】余世浩,冯伟标,曾辉.钒在高锰钢中扩散的试验研究[J].武汉理工大学学报,2012,34(8):40-44. YU S H,FENG W B,ZENG H.Study on the vanadium diffusion of high-manganese steel[J].Journal of Wuhan University of Technology,2012,34(8):40-44.
 
【7】杨坤,蒋业华,冯晶.基于ANSYS的ZTA/Fe复合材料凝固过程温度场的数值模拟[J].热加工工艺,2018,47(2):137-140. YANG K,JIANG Y H,FENG J.Numerical simulation of temperature field during solidification process of metal matrix composites based on ANSYS[J].Hot Working Technology,2018,47(2):137-140.
 
【8】靳玉春,侯华,赵宇宏,等.材料成型过程数值模拟[M].北京:兵器工业出版社,2004. JIN Y C,HOU H,ZHAO Y H,et al.Numerical simulation of material forming process[M].Beijing:The Publishing House of Ordnance Industry,2004.
 
【9】郭志强,吴文健,满亚辉,等.基于ANSYS有限元方法对相变材料相变过程的分析[J].新技术新工艺,2007(11):87-89. GUO Z Q,WU W J,MAN Y H,et al.Phase change analysis of PCM by ANSYS finite element method[J].New Technology & New Process,2007(11):87-89.
 
【10】张波,于九明,由宝财.铸造过程温度场的数值模拟[J].热加工工艺,2004,33(5):30-32. ZHANG B,YU J M,YOU B C.Numerical simulation of temperature field in casting process[J].Hot Working Technology,2004,33(5):30-32.
 
【11】余健,李晶,王福明,等.管线钢中典型夹杂物的热力学分析[J].北京科技大学学报,2009,31(增刊1):95-99. YU J,LI J,WANG F M,et al.Thermodynamic analysis on typical inclusions in pipeline steel[J].Journal of University of Science and Technology Beijing,2009,31(S1):95-99.
 
相关信息
   标题 相关频次
 20钢渗碳过程中温度场及应力场的数值模拟
 2
 2124铝合金超厚板热轧过程温度场的数值模拟
 2
 2Cr18Ni8W2不锈钢圆棒精锻过程的有限元模拟
 2
 7022铝合金搅拌摩擦焊接全过程温度场的数值模拟
 2
 7075-T6铝合金摩擦塞焊焊接区域温度场的数值模拟
 2
 Al2O3sf/LY12棒材半固态挤压工艺温度场的有限元模拟与分析
 2
 AZ31镁合金在不同温度场挤压中的数值模拟
 2
 DZ4合金渗铝-硅涂层1100℃氧化时的元素扩散规律
 2
 Q345B低碳钢/20Mn23Al无磁钢异种钢焊接接头的组织及性能
 2
 SiCp/101Al复合材料电子束焊接接头温度场对其显微组织的影响
 2
 TC4钛合金搅拌摩擦焊温度场的数值模拟
 2
 U71Mn钢重轨轧制全过程中轧件温度场的有限元模拟
 2
 不同基体材料阀门表面等离子堆焊Co106F粉末
 2
 电场活化烧结温度场的数值模拟
 2
 电触头材料的熔池演化过程
 2
 电连接接触面用低熔点锡基多元合金的制备及其与T2铜基板的结合性能
 2
 高速钢热轧辊表面温度场的测定与应用
 2
 工艺参数对铝青铜表面激光熔覆镍基合金温度场的影响
 2
 光纤光栅在热力管道泄漏检测中的应用
 2
 化学激光辐照铜锌合金熔池温度场的数值模拟
 2
 基于光纤传感技术监测大型储罐运行状态
 2
 基于神经网络的表面波频散曲线反演温度相关杨氏模量
 2
 激光反应熔覆碳化物陶瓷涂层温度场的有限元模拟
 2
 激光扫描红外热波成像的双层结构温度场
 2
 激光扫描红外热波成像的温度场分析
 2
 激光扫描红外热波成像的温度场分析
 2
 铝合金单道次热轧过程的温度模拟
 2
 镁合金圆锭电磁悬浮连续铸造过程温度场的数值模拟
 2
 某核电厂主辅给水系统连接管座流固耦合分析与疲劳寿命评估
 2
 配电站智能化节能通风系统
 2