搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
退火过程中均质和异质结构纯铜晶粒的生长
          
Growth of Homogeneous and Heterogeneous Structural Pure Copper Grains During Annealing Process

摘    要
通过相场模型和理想晶粒生长模型,模拟了均质结构及异质结构(梯度结构和双峰结构)纯铜在退火过程中的晶粒生长。结果表明:晶界能垒变化对均质结构晶粒生长速率的影响较小;退火时间大于600 s时,均质结构晶粒的生长速率有一个较大的阶梯性变化;对于异质结构晶粒,晶界能垒越大,晶粒生长越慢;梯度结构中,小晶粒的生长速率最快,中晶粒的次之,大晶粒的最慢,且晶粒尺寸越大,晶界能垒对生长速率的影响越小;双峰结构中,晶界能垒对粗晶生长速率的影响较细晶的大,增加粗晶数目,细晶的生长速率明显降低,粗晶的生长速率增加。
标    签 相场模型   理想晶粒生长模型   均质结构   异质结构   晶界能垒   phase field model   ideal grain growth model   homogeneous structure   heterogeneous structure   grain boundary energy barrier  
 
Abstract
The grain growth during the annealing process of pure copper with homogeneous and heterogeneous structure (gradient structure and bimodal structure) were simulated by the phase field model and the ideal grain growth model. The results show that the change of grain boundary energy barrier had little effect on the growth rate of grain with homogeneous structure. When the annealing time was longer than 600 s, the growth rate of homogeneous structural grains had a larger step change. For heterostructural grains, the greater the grain boundary energy barrier, the slower the grain growth. In the gradient structure, the growth rate of small grains was the fastest, followed by that of medium grains, and that of large grains was the slowest. The larger the grain size, the smaller the influence of the grain boundary energy barrier on the growth rate. In the bimodal structure, the grain boundary energy barrier had greater influence on the growth rate of coarse grains than the fine grains. The growth rate of fine grains significantly decreased and of coarse grains increased after increasing number of coarse grains.

中图分类号 TG111   DOI 10.11973/jxgccl202106011

 
  中国光学期刊网论文下载说明


所属栏目 物理模拟与数值模拟

基金项目 国家自然科学基金资助项目(51725503;51805501;52005186)

收稿日期 2020/4/7

修改稿日期 2020/12/30

网络出版日期

作者单位点击查看

备注孙书琪(1995-),男,安徽池州人,硕士研究生

引用该论文: SUN Shuqi,WANG Runzi,YUAN Guangjian,CHEN Hao,GAO Jianbao,PENG Wei,ZHANG Xiancheng,ZHANG Lijun. Growth of Homogeneous and Heterogeneous Structural Pure Copper Grains During Annealing Process[J]. Materials for mechancial engineering, 2021, 45(6): 62~69
孙书琪,王润梓,苑光健,陈浩,高建宝,彭威,张显程,张利军. 退火过程中均质和异质结构纯铜晶粒的生长[J]. 机械工程材料, 2021, 45(6): 62~69


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】RITCHIE R O.The conflicts between strength and toughness[J].Nature Materials,2011,10(11):817-822.
 
【2】YAMAKOV V,WOLF D,PHILLPOT S R,et al.Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation[J].Nature Materials,2004,3(1):43-47.
 
【3】卢柯.梯度纳米结构材料[J].金属学报,2015,51(1):1-10. LU K. Gradient nanostructured materials[J].Acta Metallurgica Sinica, 2015,51(1):1-10.
 
【4】周瑜,朱和国.合金元素增强高熵合金结构和性能的研究综述[J].热加工工艺,2018,47(6):36-40. ZHOU Y, ZHU H G. Research review of structure and properties of high-entropy alloys reinforced by alloying elements[J].Hot Working Technology,2018,47(6):36-40.
 
【5】WANG Y M, CHEN M W, ZHOU F H, et al.High tensile ductility in a nanostructured metal[J].Nature,2002,419(6910):912-915.
 
【6】WU X L,ZHU Y T.Heterogeneous materials:A new class of materials with unprecedented mechanical properties[J].Materials Research Letters,2017,5(8):527-532.
 
【7】CAI B Z,MA X L,MOERING J,et al.Enhanced mechanical properties in Cu-Zn alloys with a gradient structure by surface mechanical attrition treatment at cryogenic temperature[J].Materials Science and Engineering:A,2015,626:144-149.
 
【8】FANG T H,LI W L,TAO N R,et al.Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J].Science,2011,331(6024):1587-1590.
 
【9】ROLAND T,RETRAINT D,LU K,et al.Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J].Scripta Materialia,2006,54(11):1949-1954.
 
【10】HUANG H W,WANG Z B,LU J,et al.Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer[J].Acta Materialia,2015,87:150-160.
 
【11】SHAKOORI OSKOOIE M,ASGHARZADEH H,KIM H S.Microstructure,plastic deformation and strengthening mechanisms of an Al-Mg-Si alloy with a bimodal grain structure[J].Journal of Alloys and Compounds,2015,632:540-548.
 
【12】CAO R J,LIN C G,XIE X C,et al.Microstructure and mechanical properties of WC-Co-based cemented carbide with bimodal WC grain size distribution[J].Rare Metals,2018:1-7.
 
【13】LU K.Making strong nanomaterials ductile with gradients[J].Science,2014,345(6203):1455-1456.
 
【14】ZHANG Y S,ZHANG X M,BAI X F,et al.Effect of thermal annealing on microstructure and mechanical properties of a gradient structured tantalum prepared by plasma activated sintering[J].International Journal of Refractory Metals and Hard Materials,2012,30(1):1-5.
 
【15】BACH J,STOIBER M,SCHINDLER L,et al.Deformation mechanisms and strain rate sensitivity of bimodal and ultrafine-grained copper[J].Acta Materialia,2020,186:363-373.
 
【16】HE J H,JIN L,WANG F H,et al.Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions[J].Journal of Magnesium and Alloys,2017,5(4):423-429.
 
【17】MAYR S G,BEDORF D.Stabilization of Cu nanostructures by grain boundary doping with Bi:Experiment versus molecular dynamics simulation[J].Physical Review B,2007,76(2):024111.
 
【18】CHEN L Q,YANG W.Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters:The grain-growth kinetics[J].Physical Review B,1994,50(21):15752-15756.
 
【19】KAZARYAN A,WANG Y,DREGIA S A,et al.Grain growth in systems with anisotropic boundary mobility:Analytical model and computer simulation[J].Physical Review B,2001,63(18):184102.
 
【20】KRILL Ⅲ C E,CHEN L Q.Computer simulation of 3-D grain growth using a phase-field model[J].Acta Materialia,2002,50(12):3059-3075.
 
【21】WU K A,VOORHEES P W.Phase field crystal simulations of nanocrystalline grain growth in two dimensions[J].Acta Materialia,2012,60(1):407-419.
 
【22】MIYOSHI E,TAKAKI T,OHNO M,et al.Ultra-large-scale phase-field simulation study of ideal grain growth[J].NPJ Computational Materials,2017,3(1):1-6.
 
【23】MOELANS N,BLANPAIN B,WOLLANTS P.An introduction to phase-field modeling of microstructure evolution[J].Calphad,2008,32(2):268-294.
 
【24】MOELANS N, BLANPAIN B, WOLLANTS P. Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[J]. Physical Review B, 2008, 78(2):024113.
 
【25】BINER S B.Programming phase-field modeling[M].[S.l.]:Springer International Publishing,2017.
 
【26】SCHÖNFELDER B,WOLF D,PHILLPOT S R,et al.Molecular-dynamics method for the simulation of grain-boundary migration[J].Interface Science,1997,5(4):245-262.
 
【27】ÍŽEK J,PROCHÁZKA I,CIESLAR M,et al.Thermal stability of ultrafine grained copper[J].Physical Review B,2002,65(9):094106.
 
【28】SENECHAL M. Spatial tessellations:Concepts and applications of voronoi diagrams[J]. Science, 1993, 260(5111):1170-1173.
 
【29】WANG Z B,LU K,WILDE G,et al.Effects of grain growth on interface diffusion in nanostructured Cu[J].Scripta Materialia,2011,64(11):1055-1058.
 
【30】罗志荣,卢成健,高英俊.相场法研究初始微结构对晶粒长大的影响[J].广西科学,2016,23(5):432-436. LUO Z R, LU C J, GAO Y J. Phase field study on effect of initial microstructure on grain growth[J].Guangxi Sciences,2016,23(5):432-436.
 
【31】STRÁSKÁ J,JANEEK M,ÍŽEK J,et al.Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX-ECAP)[J].Materials Characterization,2014,94:69-79.
 
【32】SIMES S,CALINAS R,VIEIRA M T,et al.In situ TEM study of grain growth in nanocrystalline copper thin films[J].Nanotechnology,2010,21(14):145701.
 
【33】CAO P,ZHANG D L.Thermal stability of nanocrystalline copper films[J].International Journal of Modern Physics B,2006,20(25/26/27):3830-3835.
 
【34】GUO N,LI D R,YU H B,et al.Annealing behavior of gradient structured copper and its effect on mechanical properties[J].Materials Science and Engineering:A,2017,702:331-342.
 
【35】WU Y,LUO Q,QIN E W.Influencing factors of abnormal grain growth in Mg alloy by phase field method[J].Materials Today Communications,2020,22:100790.
 
【36】ZIELINSKI E M,VINCI R P,BRAVMAN J C.Effects of barrier layer and annealing on abnormal grain growth in copper thin films[J].Journal of Applied Physics,1994,76(8):4516-4523.
 
相关信息
   标题 相关频次
 基于晶体塑性理论的GH4169合金缺口效应研究
 6
 超声表面滚压加工纯钛梯度材料的力学性能反演与有限元分析
 4
 粉末冶金FGH96镍基高温合金的蠕变-疲劳交互行为
 4
 蠕变-疲劳交互作用下GH4169合金的损伤机理
 4
 20G/316L双金属复合管失效的原因
 2
 304不锈钢焊缝附近的点蚀损伤发展规律
 2
 700 ℃超超临界火电机组用高温材料研究进展
 2
 AerMet100钢再结晶过程的相场模拟
 2
 常减压蒸馏装置的腐蚀调查与分析
 2
 超临界汽轮机中压调速汽阀2Cr12NiMo1W1V钢阀杆断裂原因分析
 2
 超声表面滚压加工对Ti-6Al-4V合金显微组织及表面完整性的影响
 2
 电站汽动给水泵0Cr13Ni4Mo不锈钢主轴断裂失效分析
 2
 风机叶片紧固螺栓断裂原因
 2
 风力发电机组主轴连接螺栓断裂原因分析
 2
 高温高压含CO2气田油气混输管道失效分析
 2
 高温过热器TP347H钢管焊接接头开裂原因
 2
 火电机组给水前置泵轴断裂原因分析
 2
 基于CUDA的GPU加速代数迭代重建算法
 2
 基于X射线数字成像技术的500 kV输电线路四分裂导线间隔棒断裂分析
 2
 基于超声波粗晶检测技术的汽轮机汽门螺栓断裂分析
 2
 基于机器学习的异构金属材料性能预测及结构设计
 2
 激光气体氮化原位合成制备TiN/Ti3Al复合涂层及其抗高温冲蚀性能
 2
 立轴混流式水轮机尾水管进人门连接螺栓断裂失效分析
 2
 某水套加热炉盘管腐蚀原因
 2
 某油田地面集输管道弯头腐蚀的原因
 2
 凝汽器结垢和腐蚀原因及应对措施
 2
 气体管道泄漏的模拟与定位
 2
 水中溶解氧的微量滴定
 2
 钛合金材料超声检测实例分析
 2
 药柱产品缺陷的激光错位散斑自动检测
 2