搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
沸石咪唑酯骨架衍生碳基复合材料的结构及其超级电容器的性能
          
Structure of Zeolitic Imidazolate Frameworks Derived Carbon-based Compositeand Properties of Its Supercapacitor

摘    要
通过原位生长方法将沸石咪唑酯骨架颗粒镶嵌在聚吡咯管(质量分别为30,60,120 mg)上,再经一步热处理法碳化和活化后制备得到碳基复合材料,研究了该材料的微观结构和电化学性能,以及其组装的双电层超级电容器的电化学性能。结果表明:复合材料由碳纳米管和管外表面的氮掺杂碳颗粒组成,具有较大的比表面积和高的氮元素含量,微孔孔径集中分布在1 nm左右;复合材料具有良好的充放电可逆性和倍率性能,并表现出典型的双电层电容行为。在相同条件下,聚吡咯管质量为60 mg时复合材料的电化学性能最优,其在1 A·g-1电流密度下的比电容最大,为283 F·g-1;由该复合材料组装的对称型超级电容器具有优异的循环稳定性,在2 A·g-1充放电电流密度下循环3 000次后,其比电容保持率为91.5%,能量密度高达9.15 Wh·kg-1
标    签 碳基复合材料   纳米多孔碳   超级电容器   电化学性能   carbon-based composite   nanoporous carbon   supercapacitor   electrochemical performance  
 
Abstract
Zeolite imidazolate framework particles were embedded into polypyrrole tubes (mass of 30,60,120 mg) by in-situ growth method, and then carbon-based composites were prepared by carbonization and activation with one-step heat treatment. The microstructure and electrochemical properties of the materials and the electrochemical performance of the assembled double-layer supercapacitor were studied. The results show that the composites were composed of carbon nanotubes and nitrogen-doped carbon particles on the outer surface of the tubes; the composites had large specific surface area and high nitrogen content, and the micropore diameter was concentrated at about 1 nm. The composites had good charge-discharge reversibility and rate performance, and exhibited typical double-layer capacitance behavior. The electrochemical performance of the composites with 60 mg polypyrrole tubes was the best under the same condition, and the composite had the largest specific capacitance of 283 F·g-1 at current density of 1 A·g-1. The symmetrical supercapacitor assembled by the composite had excellent cycle stability with specific capacitance retention rate of 91.5% after 3 000 cycles at charge-discharge current density of 2 A·g-1 and with energy density of 9.15 Wh·kg-1.

中图分类号 TM242   DOI 10.11973/jxgccl202107010

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目

收稿日期 2020/8/24

修改稿日期 2021/5/20

网络出版日期

作者单位点击查看

备注叶艳秋(1985-),女,河南周口人,讲师,学士

引用该论文: YE Yanqiu. Structure of Zeolitic Imidazolate Frameworks Derived Carbon-based Compositeand Properties of Its Supercapacitor[J]. Materials for mechancial engineering, 2021, 45(7): 51~56
叶艳秋. 沸石咪唑酯骨架衍生碳基复合材料的结构及其超级电容器的性能[J]. 机械工程材料, 2021, 45(7): 51~56


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】ZHANG L L,ZHAO X S.Carbon-based materials as supercapacitor electrodes[J].Chemical Society Reviews,2009,38(9):2520-2531.
 
【2】NITTA N, WU F, LEE J T, et al. Li-ion battery materials:Present and future[J]. Materials Today, 2015, 18:252-264.
 
【3】ZHAI Y,DOU Y,ZHAO D,et al.Carbon materials for chemical capacitive energy storage[J].Advanced Materials,2011,23(42):4828-4850.
 
【4】ZHONG C,ZHONG C,DENG Y,et al.A review of electrolyte materials and compositions for electrochemical supercapacitors[J].Chemical Society Reviews,2015,44(21):7484-7539.
 
【5】WANG Q, ASTRUC D. State of the art and prospects in metal-organic framework (MOF)-based and MOF-derived nanocatalysis[J].Chemical reviews, 2019, 120(2):1438-1551.
 
【6】GU M L, WU M K, WANG S C, et al. Morphology control of nanoscale metal-organic frameworks for high-performance supercapacitors[J].Electrochimica Acta, 2020, 343:135617.
 
【7】JAVED M S,SHAHEEN N,HUSSAIN S,et al.An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra[J].Journal of Materials Chemistry A,2019,7(3):946-957.
 
【8】CAO X H, TAN C L, SINDORO M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks:Preparation and applications in energy storage and conversion[J].Chemical Society reviews, 2017, 46:2660-2677.
 
【9】YANG Y,LI S,HUANG W,et al.Effective synthetic strategy for Zn0.76Co0.24S encapsulated in stabilized N-doped carbon nanoarchitecture towards ultra-long-life hybrid supercapacitors[J].Journal of Materials Chemistry A,2019,7(24):14670-14680.
 
【10】FAIREN-JIMENEZ D,MOGGACH S A,WHARMBY M T,et al.Opening the gate:Framework flexibility in ZIF-8 explored by experiments and simulations[J].Journal of the American Chemical Society,2011,133(23):8900-8902.
 
【11】LEI Z W,DENG Y H,WANG C Y.Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction[J].Journal of Materials Chemistry A,2018,6(7):3258-3263.
 
【12】SONG Y, WANG H, YU W S, et al. Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox[J].Journal of Power Sources, 2018, 405:51-60.
 
【13】MENG J S,NIU C J,XU L H,et al.General oriented formation of carbon nanotubes from metal-organic frameworks[J].Journal of the American Chemical Society,2017,139(24):8212-8221.
 
【14】MIAO C X,XIAO X H,GONG Y,et al.Facile synthesis of metal-organic framework-derived CoSe2 nanoparticles embedded in the N-doped carbon nanosheet array and application for supercapacitors[J].ACS Applied Materials & Interfaces,2020,12(8):9365-9375.
 
【15】CHENG D D, ZHAO Y L, Tang X W, et al. Densely integrated Co, N-Co doped graphene@carbon nanotubes porous hybrids for high-performance lithium-sulfur batteries[J].Carbon, 2019, 149:750-759.
 
【16】WANG Z, HUANG J H, GUO Z W, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule, 2019, 3(5):1289-1300.
 
【17】WANG Z S, SHEN J D, JI S M, et al. B, N Co doped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries[J]. Small, 2020,16:1906634.
 
【18】MA C, CHEN X Y, LONG D H, et al. High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J].Carbon, 2017, 118:699-708.
 
【19】ZHONG S,ZHAN C X,CAO D P.Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials[J].Carbon,2015,85:51-59.
 
【20】QIU Y,ZHANG X,YANG S.High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets[J].Physical Chemistry Chemical Physics,2011,13(27):12554-12558.
 
【21】BÉGUIN F, SZOSTAK K, LOTA G, et al. A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon nanotube/polyacrylonitrile blends[J].Advanced materials,2005, 17:2380-2384.
 
【22】DENG X Y, ZHU S, LI J J, et al. Bio-inspired three-dimensional carbon network with enhanced mass-transfer ability for supercapacitors[J].Carbon, 2019, 143:728-735.
 
相关信息
   标题 相关频次
 氧化亚锰电极材料的制备及其超电容性能
 4
 Al-Zn-In-Si牺牲阳极材料的电化学性能
 2
 Mg-Zn-Cu系合金作为镁电池负极材料的性能
 2
 TiNi合金表面钼合金层的物相与性能
 2
 不同晶型MnO2超级电容器电极材料的电化学特性
 2
 超级13Cr油管钢在含Cl-溶液中的腐蚀行为及其表面腐蚀膜的电化学特性
 2
 沉淀法制备Co(OH)2及其电化学性能
 2
 电解液温度对铝阳极合金电化学性能的影响
 2
 动态海水温度对Al-Zn-In-Mg-Ti牺牲阳极性能的影响
 2
 反应堆一回路结构材料与去污液的相容性
 2
 钴掺杂锰氧化物水系锌离子电池正极材料的制备与电化学性能
 2
 合金元素Mn对铝合金阳极组织与性能的影响
 2
 核电厂鼓型滤网牺牲阳极溶解不足的原因
 2
 激光选区熔化成形Inconel718合金的显微组织以及电化学和摩擦学性能
 2
 简单包覆改性LiMn2O4正极材料在高温下的电化学性能
 2
 均匀化退火对Mg-6Al-5Pb-0.6Ce镁阳极组织和性能的影响
 2
 锂离子电池负极用一维ZnMn2O4纳米束材料的制备及电化学性能
 2
 某核电厂滤网用铝合金牺牲阳极的失效原因
 2
 纳米MnO2的制备及显微结构和电化学性能
 2
 铜表面聚合物刷的制备及其电化学性能
 2
 微量硅对Al-In-Mg-Sn阳极合金电化学性能的影响
 2
 牺牲阳极截面形状对其服役性能的影响
 2
 锌合金牺牲阳极海水干湿交替条件下的电化学性能研究
 2
 元素镓、锡、铋对牺牲阳极电化学性能的影响
 2
 轧制压下量对Fe-8Al合金板材耐蚀性的影响
 2
  朱美芳院士:把碳纤维穿在身上
 1
 #电子材料#物理学家在量子电子学领域迈出重要一步
 1
 #纳米周报#源头治理:从光源控制光噪
 1
 《自然》《科学》一周(2.6-2.12)材料科学前沿要闻
 1
 5083铝壳艇外加电流阴极保护系统研制
 1