搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高导热碳化硅陶瓷的研究进展
          
Research Progress on High Thermal Conductivity SiC Ceramics

摘    要
近年来,集成电路、热交换器、半导体等行业的快速发展对碳化硅陶瓷的导热性能提出了更高的要求。碳化硅陶瓷内部存在的晶格氧、晶界、气孔等缺陷导致其室温热导率远低于碳化硅单晶理论室温热导率。综述了添加剂、烧结工艺等因素对碳化硅陶瓷室温热导率的影响,并对高导热碳化硅陶瓷的未来发展方向进行了展望。
标    签 碳化硅陶瓷   热导率   添加剂   烧结工艺   SiC ceramics   thermal conductivity   additive   sintering process  
 
Abstract
In recent years, the rapid development of integrated circuit, heat exchanger, semiconductor industry has put forward higher requirements for the thermal conductivity of SiC ceramics. The thermal conductivity at room temperature of SiC ceramics is much lower than the theoretical value of single crystal SiC because of the defects such as lattice oxygen, grain boundary and porosity. The effects of additives and sintering process on the thermal conductivity at room temperature of SiC ceramics are reviewed. The future development direction of high thermal conductivity SiC ceramics is prospected.

中图分类号 TQ174.75   DOI 10.11973/jxgccl202109002

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目 国家科技重大专项项目(2013ZX02104)

收稿日期 2021/4/13

修改稿日期 2021/8/13

网络出版日期

作者单位点击查看

备注王晓波(1987-),男,河北邢台人,工程师,硕士

引用该论文: WANG Xiaobo,WANG Feng,HE Zhiyong,ZHANG Qifu. Research Progress on High Thermal Conductivity SiC Ceramics[J]. Materials for mechancial engineering, 2021, 45(9): 8~12
王晓波,王峰,贺智勇,张启富. 高导热碳化硅陶瓷的研究进展[J]. 机械工程材料, 2021, 45(9): 8~12


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】HUANG Y H, JIANG D L, ZHANG X F, et al.Enhancing toughness and strength of SiC ceramics with reduced graphene oxide by HP sintering[J].Journal of the European Ceramic Society, 2018, 38(13):4329-4337.
 
【2】SANTOS A C, RIBEIRO S.Liquid phase sintering and characterization of SiC ceramics[J].Ceramics International, 2018, 44(10):11048-11059.
 
【3】PACHAIYAPPAN R, GOPINATH R, GOPALAKANNAN S.Processing techniques of a silicon carbide heat exchanger and its capable properties-A review[J].Applied Mechanics and Materials, 2015, 787:513-517.
 
【4】HOTZA D, DI LUCCIO M, WILHELM M, et al.Silicon carbide filters and porous membranes:A review of processing, properties, performance and application[J].Journal of Membrane Science, 2020, 610:118193.
 
【5】KIM Y W, KULTAYEVA S, SEDLÁ AČG EK J, et al.Thermal and electrical properties of additive-free rapidly hot-pressed SiC ceramics[J].Journal of the European Ceramic Society, 2020, 40(2):234-240.
 
【6】GOELA J S, BRESE N E, PICKERING M A, et al.Chemical-vapor-deposited materials for high thermal conductivity applications[J].MRS Bulletin, 2001, 26(6):458-463.
 
【7】SLACK G A.Thermal conductivity of pure and impure silicon, silicon carbide, and diamond[J].Journal of Applied Physics, 1964, 35(12):3460-3466.
 
【8】SAKAI T, AIKAWA T.Phase transformation and thermal conductivity of hot-pressed silicon carbide containing alumina and carbon[J].Journal of the American Ceramic Society, 1988, 71(1):C-7.
 
【9】LU Y P, ZANG X R, DU B.Investigation of the effect of the SiC particle size on the properties of the AlN-SiC composite ceramic[J].Materials Chemistry and Physics, 2021, 261:124222.
 
【10】LEE Y J, PARK Y H, HINOKI T.Influence of grain size on thermal conductivity of SiC ceramics[J].IOP Conference Series:Materials Science and Engineering, 2011, 18(16):162014.
 
【11】ROMÁN-MANSO B, CHEVILLOTTE Y, OSENDI M I, et al.Thermal conductivity of silicon carbide composites with highly oriented graphene nanoplatelets[J].Journal of the European Ceramic Society, 2016, 36(16):3987-3993.
 
【12】XIA H Y, WANG J P, LIN J P, et al.Thermal conductivity of SiC ceramic fabricated by liquid infiltrating molten Si into mesocarbon microbeads-based preform[J].Materials Characterization, 2013, 82:1-8.
 
【13】VENTURA G, PERFETTI M.Thermal expansion[M]//Thermal Properties of Solids at Room and Cryogenic Temperatures.Dordrecht:Springer Netherlands, 2014:81-91.
 
【14】LIU D M, LIN B W.Thermal conductivity in hot-pressed silicon carbide[J].Ceramics International, 1996, 22(5):407-414.
 
【15】SLACK G A, AUSTERMAN S B.Thermal conductivity of BeO single crystals[J].Journal of Applied Physics, 1971, 42(12):4713-4717.
 
【16】BALANDIN A A, GHOSH S, BAO W Z, et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters, 2008, 8(3):902-907.
 
【17】KINGERY W D, BOWEN H K, UHLMANN D R, et al.Introduction to ceramics[J].Journal of the Electrochemical Society, 1977, 124(3):152C.
 
【18】NAKANO H, WATARI K, KINEMUCHI Y, et al.Microstructural characterization of high-thermal-conductivity SiC ceramics[J].Journal of the European Ceramic Society, 2004, 24(14):3685-3690.
 
【19】ZHOU Y, HIRAO K, YAMAUCHI Y, et al.Effects of rare-earth oxide and alumina additives on thermal conductivity of liquid-phase-sintered silicon carbide[J].Journal of Materials Research, 2003, 18(8):1854-1862.
 
【20】ZHU Y W, MURALI S, CAI W W, et al.Graphene and graphene oxide:Synthesis, properties, and applications[J].Advanced Materials, 2010, 22(35):3906-3924.
 
【21】RUTKOWSKI P, STOBIERSKI L, GÓRNY G.Thermal stability and conductivity of hot-pressed Si3N4-graphene composites[J].Journal of Thermal Analysis and Calorimetry, 2014, 116(1):321-328.
 
【22】XIA H Y, ZHANG X, SHI Z Q, et al.Mechanical and thermal properties of reduced graphene oxide reinforced aluminum nitride ceramic composites[J].Materials Science and Engineering:A, 2015, 639:29-36.
 
【23】YUN C, FENG Y B, QIU T, et al.Mechanical, electrical, and thermal properties of graphene nanosheet/aluminum nitride composites[J].Ceramics International, 2015, 41(7):8643-8649.
 
【24】LI Q S, ZHANG Y J, GONG H Y, et al.Effects of graphene on the thermal conductivity of pressureless-sintered SiC ceramics[J].Ceramics International, 2015, 41(10):13547-13552.
 
【25】WINTER M R, CLARKE D R.Oxide materials with low thermal conductivity[J].Journal of the American Ceramic Society, 2007, 90(2):533-540.
 
【26】CHEN C, HAN X C, SHEN H H, et al.Preferentially oriented SiC/graphene composites for enhanced mechanical and thermal properties[J].Ceramics International, 2020, 46(14):23173-23179.
 
【27】EOM J H, SEO Y K, KIM Y W.Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia[J].Journal of the American Ceramic Society, 2016, 99(5):1735-1741.
 
【28】JANG S H, KIM Y W, KIM K J, et al.Effects of Y2O3-RE2O3 (RE=Sm, Gd, Lu) additives on electrical and thermal properties of silicon carbide ceramics[J].Journal of the American Ceramic Society, 2016, 99(1):265-272.
 
【29】KIM Y H, KIM Y W, LIM K Y, et al.Mechanical and thermal properties of silicon carbide ceramics with yttria-scandia-magnesia[J].Journal of the European Ceramic Society, 2019, 39(2/3):144-149.
 
【30】ZHOU Y, HIRAO K, WATARI K, et al.Thermal conductivity of silicon carbide densified with rare-earth oxide additives[J].Journal of the European Ceramic Society, 2004, 24(2):265-270.
 
【31】SEO Y K, KIM Y W, NISHIMURA T, et al.High thermal conductivity of spark plasma sintered silicon carbide ceramics with yttria and scandia[J].Journal of the American Ceramic Society, 2017, 100(4):1290-1294.
 
【32】CHO T Y, KIM Y W.Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics[J].Journal of the European Ceramic Society, 2017, 37(11):3475-3481.
 
【33】KIM Y W, LIM K Y, SEO W S.Microstructure and thermal conductivity of silicon carbide with yttria and scandia[J].Journal of the American Ceramic Society, 2014, 97(3):923-928.
 
【34】ZHANG C, YAO X M, LI Y S, et al.Effect of AlN addition on the thermal conductivity of pressureless sintered SiC ceramics[J].Ceramics International, 2015, 41(7):9107-9114.
 
【35】VOLZ E, ROOSEN A, HARTUNG W, et al.Electrical and thermal conductivity of liquid phase sintered SiC[J].Journal of the European Ceramic Society, 2001, 21(10/11):2089-2093.
 
【36】LEE H G, KIM D, LEE S J, et al.Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites[J].Nuclear Engineering and Design, 2017, 311:9-15.
 
【37】LI Y S, YIN J, WU H B, et al.High thermal conductivity in pressureless densified SiC ceramics with ultra-low contents of additives derived from novel boron-carbon sources[J].Journal of the European Ceramic Society, 2014, 34(10):2591-2595.
 
【38】SEO Y K, EOM J H, KIM Y W.Process-tolerant pressureless-sintered silicon carbide ceramics with alumina-yttria-calcia-strontia[J].Journal of the European Ceramic Society, 2018, 38(2):445-452.
 
【39】李其松.高热导率SiC陶瓷材料制备及应用研究[D].济南:山东大学, 2016:26-45. LI Q S.Preparation and application research of high thermal conductivity SiC ceramics[D].Jinan:Shandong University, 2016:26-45.
 
【40】CHAI Z F, GAO Z H, LIU H, et al.Thermal conductivity of spark plasma sintered SiC ceramics with alumina and yttria[J].Journal of the European Ceramic Society, 2021, 41(6):3264-3273.
 
相关信息
   标题 相关频次
 复杂结构碳化硅陶瓷制备工艺的研究进展
 8
 热压烧结工艺以及碳纤维含量对C/SiC复合材料性能的影响
 4
 (Sm0.5Nd0.5)3Ce7Ta2O23.5和(Yb0.5Dy0.5)3Ce7Ta2O23.5氧化物的热物理性能
 2
 3Cr2W8V合金钢轴承套圈用热挤压芯棒断裂失效分析
 2
 3种电连接长尺寸钢样在不同海洋环境中的腐蚀行为
 2
 AgCuV合金导电滑环内部缺陷产生原因分析
 2
 B4C/TiB2复相陶瓷材料的研究进展
 2
 DP800双相钢热轧板表面氧化皮红锈的产生原因
 2
 GCr15钢轴承套圈表面脱碳层形成机理
 2
 GCr15钢轴承套圈球化退火表层脱碳分析
 2
 GCr15轴承钢的碳化物不均匀性缺陷
 2
 KI体系下制备纯银镀层和纯银/银石墨复合镀层的性能
 2
 Mg含量对真空蒸镀Zn-Mg镀层耐蚀性的影响
 2
 Mg元素对热浸镀锌基合金镀层组织结构的影响
 2
 MoSe2纳米片的制备及其摩擦性能
 2
 X射线荧光光谱法测定润滑油中22种添加剂元素和磨损金属元素
 2
 玻璃含量对低温烧结硼硅酸盐玻璃-AlN陶瓷复合材料性能的影响
 2
 不同含量Al2O3微粒改性环氧树脂复合材料的导热和导电特性
 2
 不同氧化物对钛-铝系原位合成Al2O3晶须的影响
 2
 不锈钢拦污栅栅条断裂失效的原因
 2
 不锈钢在不同介质中的正负交变电脉冲处理及其对耐腐蚀性的影响
 2
 超声提取-电感耦合等离子体质谱法快速测定海蜇制品中铝的残留量
 2
 潮差区-全浸区电联接碳钢试样暴露30 d的腐蚀行为
 2
 冲压温度对镀锌22MnB5钢板镀层中裂纹的影响
 2
 磁流变液沉降稳定性的研究进展
 2
 大环内酯类抗生素与牛血清白蛋白反应产物的荧光光谱特性
 2
 导体材料涡流热成像应力检测的仿真
 2
 电阻瞬态法测定材料的传热性能
 2
 靛蓝二磺酸钠和牛血清白蛋白的结合反应
 2
 反应烧结制备AlON-AlN复相陶瓷及其性能
 2