搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
N80Q钢的低周疲劳特性及寿命预测
          
Low Cycle Fatigue Characteristics and Life Prediction of N80Q Steel

摘    要
在Instron 8862型疲劳试验机上对油井套管用N80Q钢进行完全对称循环载荷(平均应变为0)和非对称循环载荷(平均应变为0.5%和1.0%)下的低周疲劳试验,研究该钢的低周疲劳特性,并讨论了考虑不同因素的低周疲劳寿命模型的预测精度。结果表明:塑性应变能随应变幅的增大呈线性增长趋势,平均应变对塑性应变能几乎无影响;在对称载荷、不同应变幅(0.5%~2.0%)下以及非对称载荷、应变幅大于1.0%下,N80Q钢均无应力松弛行为,而在非对称载荷、应变幅小于1.0%时出现明显的应力松弛行为,且初始平均应力越大,应力松弛行为越明显;考虑最大应力、应力范围、应变范围以及平均应变影响的经验模型的预测精度较高,预测寿命主要分散在1.2倍分散带内。
标    签 低周疲劳特性   平均应变   应力松弛   疲劳寿命预测   low cycle fatigue characteristic   mean strain   stress relaxation   fatigue life prediction  
 
Abstract
Low cycle fatigue tests of N80Q steel for oil well casing were carried out on Instron 8862 fatigue tester under complete symmetrical cycle loads (mean strain of 0) and non-symmetrical cycle loads (mean strain of 0.5% and 1.0%). The low cycle fatigue characteristics of the steel were studied, and the prediction accuracy of low cycle fatigue life models considering different factors was discussed. The results show that the plastic strain energy increased linearly with increasing strain amplitude, and the mean strain had little effect on the plastic strain energy. There was no stress relaxation behavior of N80Q steel under different strain amplitudes (0.5%-2.0%) and symmetric load or under strain amplitude greater than 1.0% and asymmetric load. When the strain amplitude was less than 1.0% under asymmetric load, the stress relaxation behavior was obvious; the larger the initial mean stress, the more obvious the stress relaxation behavior. The empirical model considering the influence of maximum stress, stress range, strain range and mean strain had higher prediction accuracy, and the predicted lives were mainly dispered in 1.2 time scatter band.

中图分类号 TG115.5   DOI 10.11973/jxgccl202109014

 
  中国光学期刊网论文下载说明


所属栏目 材料性能及应用

基金项目 国家自然科学基金资助项目(51901180);国家重点研发计划项目(2019YFF0217504)

收稿日期 2020/7/13

修改稿日期 2021/6/2

网络出版日期

作者单位点击查看

备注崔璐(1979-),女,陕西西安人,教授,博士

引用该论文: CUI Lu,WU Peng,YANG Chenghui,KANG Wenquan,LI Zhen,WEI Wenlan,WANG Peng. Low Cycle Fatigue Characteristics and Life Prediction of N80Q Steel[J]. Materials for mechancial engineering, 2021, 45(9): 73~78
崔璐,吴鹏,杨程晖,康文泉,李臻,魏文澜,王澎. N80Q钢的低周疲劳特性及寿命预测[J]. 机械工程材料, 2021, 45(9): 73~78


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】李鹤林, 韩礼红.刍议我国油井管产业的发展方向[J].焊管, 2009, 32(4):5-10. LI H L, HAN L H.Research and development direction of China oil-well tubular products industry[J].Welded Pipe and Tube, 2009, 32(4):5-10.
 
【2】冯耀荣, 杨龙, 李鹤林. 石油管失效分析预测预防与完整性管理[J]. 金属热处理, 2011, 36(增刊1):15-16. FENG Y R, YANG L, LI H L. Failure analysis prediction & prevention and integrity management[J]. Heat Treatment of Metals, 2011, 36(1):15-16.
 
【3】李鹤林, 韩礼红, 张文利.高性能油井管的需求与发展[J].钢管, 2009, 38(1):1-9. LI H L, HAN L H, ZHANG W L.Demand and development of hi-performance OCTG[J].Steel Pipe, 2009, 38(1):1-9.
 
【4】WEI W L, HAN L H, FENG Y R, et al. Low cycle fatigue behavior of N80Q steel under the influence of mean strains[J]. Materials Science Forum, 2019, 944:1067-1075.
 
【5】MORROW J. Fatigue design handbook:Advances in engineering[M]. Warrendale, PA:Society of Automotive Engineers, 1968:21-29.
 
【6】OHJI K, MILLER W R, MARIN J. Cumulative damage and effect of mean strain in low cycle fatigue of a 2024-T351 aluminum alloy[J]. Journal of Basic Engineering, 1966, 88(4):801-810.
 
【7】张孝忠, 王恭义, 程凯, 等.一种考虑平均应力松弛的汽轮机叶根低周疲劳寿命预测方法[J].材料科学与工程学报, 2019, 37(5):709-713. ZHANG X Z, WANG G Y, CHENG K, et al.LCF Life prediction method of turbine blade roots considering mean stress relaxation effect[J].Journal of Materials Science and Engineering, 2019, 37(5):709-713.
 
【8】DOWLING N E.Mean stress effects in strain-life fatigue[J].Fatigue and Fracture of Engineering Materials and Structures, 2009, 32(12):1004-1019.
 
【9】SALERNO G, MAGNABOSCO R, NETO C D M. Mean strain influence in low cycle fatigue behavior of AA7175-T1 aluminum alloy[J]. International Journal of Fatigue, 2007, 29(5):829-835.
 
【10】ZHU S P, LEI Q, HUANG H Z, et al. Mean stress effect correction in strain energy-based fatigue life prediction of metals[J]. International Journal of Damage Mechanics, 2016, 26(8):1219-1241.
 
【11】苏运来, 陆山.适用于任意应变比的应变寿命新模型[J].推进技术, 2018, 39(1):169-175. SU Y L, LU S.A new strain-life model accounting for effects of various strain ratios[J].Journal of Propulsion Technology, 2018, 39(1):169-175.
 
【12】ELLYIN F. Effect of tensile-mean-strain on plastic strain energy and cyclic response[J]. Journal of Engineering Materials and Technology, 1985, 107(2):119-125.
 
【13】TAO G, XIA Z H.Mean stress/strain effect on fatigue behavior of an epoxy resin[J].International Journal of Fatigue, 2007, 29(12):2180-2190.
 
【14】KOH S K, OH S J, LI C, et al. Low-cycle fatigue life of SiC-particulate-reinforced Al-Si cast alloy composites with tensile mean strain effects[J]. International Journal of Fatigue, 1999, 21:1019-1032.
 
【15】BEGUM S, CHEN D L, XU S, et al.Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy[J].Metallurgical and Materials Transactions A, 2008, 39(12):3014-3026.
 
【16】HUMAYUN KABIR S M, YEO T I.Fatigue behavior of an austenitic steel of 300-series under non-zero mean loading[J].Journal of Mechanical Science and Technology, 2012, 26(1):63-71.
 
【17】ZHUANG W Z, HALFORD G R.Investigation of residual stress relaxation under cyclic load[J].International Journal of Fatigue, 2001, 23(S1):31-37.
 
【18】张仕朝, 李旭东. 铸造钛合金ZTC4不同应变比下的低周疲劳行为[J]. 材料热处理学报, 2020, 41(2):142-146. ZHANG S C, LI X D.Low cycle fatigue behavior of cast titanium alloy ZTC4 at different strain ratios[J]. Transactions of Materials and Heat Treatment, 2020, 41(2):142-146.
 
【19】OSGOOD WR, RAMBERG W. Description of stress-strain curves by three parameters[J]. National Advisory Committee for Aeronautics, Technical Note, 1943:1-13.
 
【20】傅惠民.ε-N曲线三参数幂函数公式[J]. 北京航空航天大学学报, 1993(2):57-60. FU H M. A formula of three-parameter power function for ε-N curves[J]. Journal of Beijing University of Aeronautics and Astronautics, 1993(2):57-60.
 
【21】KUN F, CARMONA H A, ANDRADE J S, et al.Universality behind basquin's law of fatigue[J].Physical Review Letters, 2008, 100(9):094301.
 
【22】MANSON S S.Fatigue:A complex subject-Some simple appro-ximations[J].Experimental Mechanics, 1965, 5(4):193-226.
 
【23】陈宏, 蒋洪德.一种镍基单晶合金高温低周疲劳寿命预测方法[J].机械强度, 2015, 37(5):857-862. CHEN H, JIANG H D. Low cycle fatigue life prediction method or single crystal nickel-bace super alloys at high temperature[J].Journal of Mechanical Strength, 2015, 37(5):857-862.
 
相关信息
   标题 相关频次
 0.6Zr3Mo钛合金在含不同浓度盐酸胶凝酸中的腐蚀疲劳行为
 6
 022Cr17Ni12Mo2不锈钢缺口试样的疲劳寿命预测
 2
 45钢的疲劳裂纹扩展速率及其工程构件的寿命预测
 2
 API油管接箍液固两相流体冲蚀数值模拟
 2
 GH4169合金的反常应力松弛行为
 2
 GH4169合金的高温应力松弛行为及蠕变本构方程
 2
 L80油管螺纹接头腐蚀原因分析
 2
 P92钢在蠕变-疲劳交互作用下的初始循环特性
 2
 玻璃纤维表面能及其与不同树脂体系的润湿特性
 2
 动态应变时效影响下热采井套管用80SH钢的高温低周疲劳行为
 2
 多孔硅泡沫衬垫应力松弛行为的数值模拟
 2
 高温服役3×105h后汽缸螺栓用20Cr1Mo1V1钢的应力松弛性能
 2
 高温合金激光冲击强化数值模拟及其疲劳寿命预测
 2
 混合型泡孔结构硅橡胶泡沫的制备与压缩性能
 2
 基于θ-映射法的ZSGH4169合金缺口试样蠕变变形模拟
 2
 基于飞行载荷的LC9铝合金腐蚀疲劳裂纹扩展
 2
 基于分形维数的预腐蚀铝合金疲劳寿命预测
 2
 考虑棘轮效应的疲劳寿命预测方法
 2
 流动NaCl溶液中P110钢的电化学腐蚀行为
 2
 泡孔结构对硅橡胶泡沫材料性能的影响
 2
 气相色谱-质谱法测定水体中三氟乙酸项
 2
 汽车用SPHC热轧薄钢板的低周疲劳特性
 2
 热塑性聚氨酯复合纤维布料拉伸过程的超弹性和黏弹性本构模型
 2
 输油管道用316L和2205不锈钢低温蠕变模型的选择与验证
 2
 2.25CrMoV钢于夹杂物和晶界处开裂低周疲劳裂纹扩展的原位观测
 1
 45圆钢冷拔加工开裂原因分析
 1
 HY-007防水防腐蚀涂料在油田油水分离器中的应用
 1
 P110钢级油管接箍开裂失效分析
 1
 SY/T 0327—2003《石油天然钢质管道对接环焊缝全自动超声波检测》编制说明
 1
 表面粗糙度对800H合金在超临界水环境中腐蚀行为的影响
 1