搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
铜基复合材料制备工艺的研究进展
          
Research Progress on Preparation Technology of Copper Matrix Composites

摘    要
高新科技的快速发展对高性能铜材料的开发提出了更高的要求,铜基复合材料因具有较高的强度和良好的导电导热性、耐磨耐腐蚀性、高温稳定性等而得到广泛的应用,其制备工艺在不断发展,且近年来取得了很大进展。综述了铜基复合材料主要制备工艺,包括粉末冶金法、铸造法、机械合金化法、内氧化法、原位合成法、熔体浸渗法和搅拌摩擦法等的特点及其研究进展,并对铜基复合材料制备工艺今后的发展方向进行了展望。
标    签 铜基复合材料   制备工艺   铜和铜合金   增强相   copper matrix composite   preparation process   copper and copper alloy   reinforced phase  
 
Abstract
The rapid development of high technology puts forward higher requirements for the development of high-performance copper materials. Copper matrix composites have been widely used because of their high strength and good electrical and thermal conductivity, wear resistance, corrosion resistance and high-temperature stability; their preparation processes are constantly developing, and great progress has been made in recent years. The characteristics and research progress of the main preparation processes of copper matrix composites, including powder metallurgy technique, casting process, mechanical alloying, internal oxidation, in-situ synthesis, melt infiltration, and friction stir processing, are reviewed. The development direction of copper matrix composite preparation technology in the future is prospected.

中图分类号 TB331   DOI 10.11973/jxgccl202110002

 
  中国光学期刊网论文下载说明


所属栏目 综述

基金项目

收稿日期 2020/8/4

修改稿日期 2021/4/28

网络出版日期

作者单位点击查看

备注雷沙沙(1993-),女,陕西西安人,硕士研究生

引用该论文: LEI Shasha,LIU Hongjun. Research Progress on Preparation Technology of Copper Matrix Composites[J]. Materials for mechancial engineering, 2021, 45(10): 13~21
雷沙沙,刘洪军. 铜基复合材料制备工艺的研究进展[J]. 机械工程材料, 2021, 45(10): 13~21


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】于竹丽, 朱和国.铜基复合材料的导电性研究现状[J]. 材料导报, 2015, 29(2):345-349. YU Z L, ZHU H G. Research status of conductive properties of copper matrix composites[J]. Materials Review, 29(2):345-349.
 
【2】陈爱华, 闫晨, 孟志立.铜基复合材料制备及研究新进展[J].中国冶金, 2019, 29(2):7-11. CHEN A H, YAN C, MENG Z L.Preparation and research progress of copper matrix composites[J].China Metallurgy, 2019, 29(2):7-11.
 
【3】董亭义, 户赫龙, 于文军, 等.集成电路用钛靶材和铜铬合金背板扩散焊接技术研究[J].金属功能材料, 2017, 24(6):23-27. DONG T Y, HU H L, YU W J, et al.Study on diffusion bonding technology of Ti target and CuCr alloy backplane for integrated circuit (IC)[J].Metallic Functional Materials, 2017, 24(6):23-27.
 
【4】ZHANG P, ZHANG L, WEI D B, et al. A high-performance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature[J]. Wear, 2020, 445:2-10.
 
【5】王英敏, 羌建兵, 陈修彤, 等.一种三氧化二钇弥散强化铜合金的制备方法:110029246A[P].2019-07-19. WANG Y M, QIANG J B, CHEN X T, et al.A method for preparing yttrium dispersion strengthened copper alloy:110029246A[P].2019-07-19.
 
【6】LI C G, XIE Y H, ZHOU D S, et al. A novel way for fabricating ultrafine grained Cu-4.5vol% Al2O3 composite with high strength and electrical conductivity[J]. Materials Characterization, 2019, 155(52):1-9.
 
【7】ZHOU X Y, HU Z, YI D G. Enhancing the oxidation resistance and electrical conductivity of alumina reinforced copper-based composites via introducing Ag and annealing treatment[J]. Journal of Alloys and Compounds, 2019, 787(29):786-793.
 
【8】REN F Z, ZHI A J, ZHANG D W, et al. Preparation of Cu-Al2O3 bulk nano-composites by combining Cu-Al alloy sheets internal oxidation with hot extrusion[J]. Journal of Alloys & Compounds, 2015, 633(25):323-328.
 
【9】SUDHA G T, STALIN B, RAVICHANDRAN M, et al. Mechanical properties, characterization and wear behavior of powder metallurgy composites-A review[J]. Materials Today:Proceedings, 2020, 22(4):2582-2596.
 
【10】PATIL O M, KHEDKAR N N, SACHIT T S, et al. A review on effect of powder metallurgy process on mechanical and tribological properties of hybrid nano composites[J]. Materials Today:Proceedings, 2018, 5(2):5802-5808.
 
【11】国秀花, 龙飞, 周延军, 等.粉末冶金法制备氧化物颗粒增强Cu基复合材料[J].特种铸造及有色合金, 2018, 38(2):205-209. GUO X H, LONG F, ZHOU Y J, et al.Microstructure and properties of oxide particle reinforced copper matrix composites by powder metallurgy[J].Special Casting & Nonferrous Alloys, 2018, 38(2):205-209.
 
【12】TIAN Y N, DOU Z H, NIU L P, et al.Studies on copper-coated boron carbide particle-reinforced copper-matrix/graphite self-lubricating composite materials[J].Russian Journal of Non-Ferrous Metals, 2019, 60(5):575-582.
 
【13】AKBARPOUR M R, ALIPOUR S. Wear and friction properties of spark plasma sintered SiC/Cu nanocomposites[J]. Ceramics International, 2017, 43(16):13364-13370.
 
【14】AKBARPOUR M R, MIRABAD H M, AZAR M K, et al. Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process[J]. Materials Science and Engineering:A, 2020, 786(33):790-784.
 
【15】TEJADO E, DIAS M, CORREIA J B, et al. New WC-Cu thermal barriers for fusion applications:High temperature mechanical behaviour[J]. Journal of Nuclear Materials, 2018, 498(60):355-361.
 
【16】ŞAHIN Y, ÖKSVZ K E. Microstructure and hardness characteristics of Al2O3-B4C particle-reinforced Cu matrix composites[J]. Acta Physica Polonica A, 2016, 129(4):650-662.
 
【17】BHOSALE S B, BHOWMIK S, RAY A. Multi criteria decision making for selection of material composition for powder metallurgy process[J]. Materials Today:Proceedings, 2018, 5(2):4615-20.
 
【18】熊光耀, 郑美珠, 赵龙志.铸造法制备金属基复合材料的研究现状[J].铸造技术, 2011, 32(4):563-565. XIONG G Y, ZHENG M Z, ZHAO L Z.Research on the metal matrix composites prepared by casting process[J].Foundry Technology, 2011, 32(4):563-565.
 
【19】XAVIOR M A, KUMAR J P A. Machinability of hybrid metal matrix composite-A review[J]. Procedia Engineering, 2017, 174:1110-1118.
 
【20】YADAV P, DWIVEDI S P, SHAHNAWAZ M, et al. Development of copper based composite by stir casting technique[J]. Materials Today:Proceedings, 2020, 25(4):1-5.
 
【21】SRIVASTAVA N, ANAS M. An investigative review of squeeze casting:Processing effects & impact on properties[J]. Materials Today:Proceedings, 2020, 26(2):2214-7853.
 
【22】SINGH M K, GAUTAM R K.Synthesis of copper metal matrix hybrid composites using stir casting technique and its mechanical, optical and electrical behaviours[J].Transactions of the Indian Institute of Metals, 2017, 70(9):2415-2428.
 
【23】SINGH M K, GAUTAM R K, JI G. Mechanical properties and corrosion behavior of copper based hybrid composites synthesized by stir casting[J]. Results in Physics, 2019, 13:1-11.
 
【24】JAMWAL A, PRAKASH P, KUMAR D, et al. Microstructure, wear and corrosion characteristics of Cu matrix reinforced graphite-SiC composites[J]. Journal of Composite Materials, 2020, 251:1-9.
 
【25】邹存磊.原位Cu-Ti(Zr)-B颗粒增强铜基复合材料的制备与性能研究[D].大连:大连理工大学, 2018. ZOU C L.Study on the fabrication and properties of in situ Cu-Ti(Zr)-B particulate reinforced copper matrix composites[D].Dalian:Dalian University of Technology, 2018.
 
【26】徐慧燕, 黎振华, 滕宝仁, 等.空间结构增强铜基复合材料的摩擦磨损特征[J].摩擦学学报, 2019, 39(5):611-618. XU H Y, LI Z H, TENG B R, et al.Tribological properties of copper matrix composite with lattice reinforcement[J].Tribology, 2019, 39(5):611-618.
 
【27】PROSVIRYAKOV A S. SiC content effect on the properties of Cu-SiC composites produced by mechanical alloying[J]. Journal of Alloys & Compounds, 2015, 632:707-710.
 
【28】LI Z L, WANG W M, WANG J L. Effects of TiB2 on microstructure of nano-grained Cu-Cr-TiB2 composite powders prepared by mechanical alloying[J]. Advanced Powder Technology, 2014, 25(1):415-422.
 
【29】VISHLAGHI M B, ATAIE A. Investigation on solid solubility and physical properties of Cu-Fe/CNT nano-composite prepared via mechanical alloying route[J]. Powder Technology, 2014, 268:102-109.
 
【30】MENG Y F, SHEN Y F, CHEN C, et al. Microstructures and formation mechanism of W-Cu composite coatings on copper substrate prepared by mechanical alloying method[J]. Applied Surface Science, 2013, 282(1):757-764.
 
【31】董仕节, 罗平, 常鹰, 等.点焊电极表面电火花熔敷TiB2-TiC复相涂层用的熔敷棒其制备方法:103801858A[P].2014-05-21. DONG S J, LUO P, CHANG Y, et al.Method for preparation of cladding rod for electrospark cladding of TiB2-TiC multiphase coating on spot welding electrode surface:103801858A[P].2014-05-21.
 
【32】KOCH C C, SCATTERGOOD R O, YOUSSEF K M, et al.Nanostructured materials by mechanical alloying:New results on property enhancement[J].Journal of Materials Science, 2010, 45(17):4725-4732.
 
【33】SURYANARAYANA C, KLASSEN T, IVANOV E.Synthesis of nanocomposites and amorphous alloys by mechanical alloying[J].Journal of Materials Science, 2011, 46(19):6301-6315
 
【34】SHI Z Y, YAN M F. The preparation of Al2O3-Cu composite by internal oxidation[J]. Applied Surface Science, 1998, 134(1):103-106.
 
【35】LI G B, GUO Q M, SUN J B, et al.Fabrication of the nanometer Al2O3/Cu composite by internal oxidation[J].Journal of Materials Processing Technology, 2005, 170(1/2):336-340.
 
【36】LIANG S H, FANG L, XU L, et al. Effect of Al content on the properties and microstructure of Al2O3-Cu composite prepared by internal oxidation[J]. Journal of Composite Materials, 2004, 38(17):1495-1504.
 
【37】孙建军, 刘汉强, 王永朝, 等.配氧系数对Al2O3/Cu粉末微观组织及硬度的影响[J].材料开发与应用, 2019, 34(6):15-20. SUN J J, LIU H Q, WANG Y Z, et al.Influence of oxygen coefficient on the microstructure and hardness of Al2O3/Cu powder[J].Development and Application of Materials, 2019, 34(6):15-20.
 
【38】SONG K X, LIU P, TIAN B H, et al. Stabilization of nano-Al2O3/Cu composite after high temperature annealing treatment[J]. Materials Science Forum, 2005, 510:993-996.
 
【39】SONG K X, XING J D, DONG Q M, et al. Optimization of the processing parameters during internal oxidation of Cu-Al alloy powders using an artificial neural network[J]. Materials & Design, 2005, 26(4):337-341.
 
【40】李美霞, 冯亚鹏, 谢娟.内氧化法制备Al2O3颗粒弥散强化Cu合金的组织性能分析与理论校核[J].粉末冶金工业, 2019, 29(2):24-28. LI M X, FENG Y P, XIE J.Analysis and theoretical verification on microstructure and properties of Al2O3 particle dispersion strengthened Cu alloy prepared by internal oxidation method[J].Powder Metallurgy Industry, 2019, 29(2):24-28.
 
【41】XU K, CHEN X H, ZHOU H L, et al. Preparation and formation mechanism of CNTs/Cu-Al2O3 composite powders by in situ CVD using internally-oxidized Cu-Al alloy powders[J]. Materials Letters, 2019, 254:390-393.
 
【42】丁飞, 凤仪, 钱刚, 等.原位合成法制备Cu-Al2O3复合材料及其性能研究[J].材料导报, 2014, 28(8):69-73. DING F, FENG Y, QIAN G, et al.Study on in situ synthesis of Cu-Al2O3 composites and their performance[J].Materials Review, 2014, 28(8):69-73.
 
【43】WANG T M, ZOU C L, CHEN Z N, et al.In situ synthesis of TiB2 particulate reinforced copper matrix composite with a rotating magnetic field[J].Materials and Design, 2015, 65:280-288.
 
【44】RUŽIC J, STASIC J, RAJKOVIC V, et al.Synthesis, microstructure and mechanical properties of ZrB2 nano and microparticle reinforced copper matrix composite by in situ processings[J].Materials & Design, 2014, 62:409-415.
 
【45】LV X Z, ZHAN Z J, CAO H Y, et al. Microstructure and properties of the laser cladded in-situ ZrB2-ZrC/Cu composite coatings on copper substrate[J]. Surface & Coatings Technology, 2020, 396:2-9.
 
【46】QU X H, HE X B, ZHANG L.SiCp/Cu composites prepared by pressureless infiltration of copper into porous SiC preforms[J].Powder Metallurgy, 2008, 51(1):53-58.
 
【47】ABYZOV A M, SHAKHOV F M, AVERKIN A I, et al. Mechanical properties of a diamond-copper composite with high thermal conductivity[J]. Materials & Design, 2015, 87(15):527-39.
 
【48】RAMBO C R, TRAVITZKY N, GREIL P. Conductive TiC/Ti-Cu/C composites fabricated by Ti-Cu alloy reactive infiltration into 3D-printed carbon performs[J]. Journal of Composite Materials, 2017, 49(16):1971-1976.
 
【49】李晓雪.冷冻铸造-无压浸渗法制备WC/Cu复合材料的研究[D].兰州:兰州理工大学, 2019:17-26. LI X X.Study on preparation of WC/Cu composite by freezing casting-pressureless infiltration method[D].Lanzhou:Lanzhou University of Technology, 2019:17-26.
 
【50】THALLAPALLI N, KANDI K K, BATTA R. Investigation on the micro-structure and mechanical properties of copper based surface composites fabricated by friction stir processing[J]. Materials Today:Proceedings, 2020, 27(2):1774-1779.
 
【51】MUBIAYI M P, AKINLABI E T, MAKHATHA M E. Current state of friction stir spot welding between aluminum and copper[J]. Materials Today:Proceedings, 2018, 5(9):18633-18640.
 
【52】MISHRA R S, MA Z Y, CHARIT I. Friction stir processing:A novel technique for fabrication of surface composite[J]. Materials Science and Engineering:A, 2003, 341(1):307-310.
 
【53】BARMOUZ M, ASADI P, GIVI M K B, et al. Investigation of mechanical properties of Cu/SiC composite fabricated by FSP:Effect of SiC particles' size and volume fraction[J]. Materials Science and Engineering:A, 2011, 528(3):1740-1749.
 
【54】LI C, FENG X M, SHEN Y F, et al. Preparation of Al2O3/TiO2 particle-reinforced copper through plasma spraying and friction stir processing[J]. Materials & Design, 2016, 90:922-930.
 
【55】KHOSRAVI J, GIVI M K B, BARMOUZ M, et al.Microstructural, mechanical, and thermophysical characterization of Cu/WC composite layers fabricated via friction stir processing[J].The International Journal of Advanced Manufacturing Technology, 2014, 74(5):1087-1096.
 
相关信息
   标题 相关频次
 AlN含量对AlN/Zr-Cu复合材料性能的影响
 2
 TiO2压敏陶瓷电性能的研究现状
 2
 短碳纤维增强铜基复合材料制备新工艺
 2
 钢芯铝绞线拉断力测试试样端头的制备工艺
 2
 高熵合金涂层制备及耐腐蚀性能的研究进展
 2
 含板状WC晶粒硬质合金的研究进展
 2
 摩擦速度和电流密度对铜基复合材料载流摩擦磨损性能的影响
 2
 纳米碳化硅增强铜基复合材料的组织及其磨损性能
 2
 耐磨铜合金的研究现状与发展趋势
 2
 石墨烯增强铜基复合材料制备工艺及性能的研究进展
 2
 碳纳米管增强铜基复合材料的研究进展
 2
 网络结构增强金属基复合材料的研究进展
 2
 载流摩擦参数对铜基复合材料起弧率及载流摩擦学性能的影响
 2
 AlNp/Cu复合材料的热学性能
 1
 Analysis on Relay Slow-acting for Breaker Failure Protection
 1
 SiC和石墨颗粒混杂增强铜基复合材料的摩擦磨损性能
 1
 Ti3AlC2/Cu复合材料的制备与性能
 1
 TiSiN纳米复合结构涂层的研究进展
 1
 常见圆柱形拉伸试棒制备工艺误区
 1
 复杂结构碳化硅陶瓷制备工艺的研究进展
 1
 高效液相色谱法测定间硝基苯磺酸还原制备间氨基苯磺酸过程中的间氨基苯磺酸和间硝基苯磺酸
 1
 激光能量密度对选区激光熔化成形Al4SiC4/AlSi10Mg复合材料显微组织的影响
 1
 空心球金属泡沫的研究进展
 1
 纳米AlN含量对石墨/铜-0.6%铬复合材料性能的影响
 1
 倾斜板法制备半固态A356合金浆料凝固后的显微组织
 1
 球磨时间和氧化铝含量对氧化铝弥散增强铜基复合材料组织与性能的影响
 1
 热处理工艺对CuNiTiBe合金组织及性能的影响
 1
 烧结钕-铁-硼永磁材料的研究进展
 1
 碳纳米管增强铝基复合材料的研究进展
 1
 天津大学纳米及复合材料课题组Nature Communications:粉末冶金法制备三维类石墨烯网络增强铜基复合材料
 1