搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
低地轨道空间中原子氧对聚酰亚胺的侵蚀及其防护措施
          
Atomic Oxygen Erosion-Corrosion to Polyimide in Low Earth Orbit and Its Protective Measures

摘    要
空间飞行器是人类探索、开发和利用外太空的载体,飞行器材料由于在低地球轨道空间中受到各种侵蚀作用而性能退化,其中高能量的原子氧(AO)是导致空间飞行器材料产生失效的最主要的环境因素。综述了空间原子氧对典型空间材料的侵蚀行为以及各类抗原子氧侵蚀的防护涂层技术,重点介绍了新型石墨烯二维材料及其复合改性涂层对原子氧侵蚀的防护性能,以期为抗原子氧侵蚀防护涂层的开发提供技术参考。
标    签 低地球轨道   原子氧   石墨烯   防护涂层   low earth orbit (LEO)   atomic oxygen (AO)   graphene   protective coating  
 
Abstract
Space vehicles are important carriers for humans to explore, develop and utilize outer space. In low Earth orbit (LEO) space, the performance of aircraft materials is degraded due to various erosion-corrosion effects. Among them, high energy atomic oxygen (AO) is the most important environmental factor responsible for the failure of spacecraft materials. The AO erosion-corrosion behavior of space atomic oxygen to typical space materials and various AO-resistant coating technologies are reviewed. The protective properties of a novel graphene two-dimensional material and its composite modified coatings against atomic oxygen erosion-corrosion are introduced in detail in order to provide technical reference for the development of AO-resistant coatings.

中图分类号 TG172 TG174   DOI 10.11973/fsyfh-202111002

 
  中国光学期刊网论文下载说明


所属栏目 专论

基金项目

收稿日期 2019/12/13

修改稿日期

网络出版日期

作者单位点击查看


引用该论文: CUI Zhiyao,WANG Linshan,QIAN Yuhai,ZUO Jun,XU Jingjun,LI Meishuan. Atomic Oxygen Erosion-Corrosion to Polyimide in Low Earth Orbit and Its Protective Measures[J]. Corrosion & Protection, 2021, 42(11): 12


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】LI G H, LIU X, LI T. Effects of low earth orbit environments on atomic oxygen undercutting of spacecraft polymer films[J]. Composites Part B:Engineering, 2013, 44(1):60-66.
 
【2】SKURAT V E, BARBASHEV E A, DOROFEEV Y I, et al. Simulation of polymer film and surface behaviour in a space environment[J]. Applied Surface Science, 1996, 92:441-446.
 
【3】LIU Y, LIU X, LI G H, et al. Numerical investigation on atomic oxygen undercutting of the protective polymer film using Monte Carlo approach[J]. Applied Surface Science, 2010, 256(20):6096-6106.
 
【4】ISMAIL A F, DAVID L I B. A review on the latest development of carbon membranes for gas separation[J]. Journal of Membrane Science, 2001, 193(1):1-18.
 
【5】LI Z, SONG H W, HE M H, et al. Atomic oxygen-resistant and transparent polyimide coatings from[3, 5-bis(3-aminophenoxy) phenyl] diphenylphosphine oxide and aromatic dianhydrides:preparation and characterization[J]. Progress in Organic Coatings, 2012, 75(1/2):49-58.
 
【6】BANKS B A, DE GROH K K, MILLER S K, et al. Lessons learned from atomic oxygen interaction with spacecraft materials in low earth orbit[C]//AIP Conference Proceedings. Toronto:AIP, 2009:312-325.
 
【7】BANKS B A, DE GROH K K, MILLER S K. Low earth orbital atomic oxygen interactions with spacecraft materials[J]. MRS Proceedings, 2004, 851:331-342.
 
【8】HU L F, LI M S, XU C H, et al. A polysilazane coating protecting polyimide from atomic oxygen and vacuum ultraviolet radiation erosion[J]. Surface and Coatings Technology, 2009, 203(22):3338-3343.
 
【9】OH E O, CHAKRABARTI K, JUNG H Y, et al. Microstructures and mechanical properties of organically modified silicate prepared under various process conditions[J]. Materials Science and Engineering:B, 2002, 90(1/2):60-66.
 
【10】ZHENG N, HE J M, ZHAO D, et al. Improvement of atomic oxygen erosion resistance of carbon fiber and carbon fiber/epoxy composite interface with a silane coupling agent[J]. Materials & Design, 2016, 109:171-178.
 
【11】DUO S W, CHANG Y C, LIU T Z, et al. Atomic oxygen erosion resistance of polysiloxane/POSS hybrid coatings on Kapton[J]. Physics Procedia, 2013, 50:337-342.
 
【12】齐红. 镁合金与有机硅/SiO2杂化涂层抗原子氧侵蚀性能研究[D]. 沈阳:中国科学院金属研究所, 2018.
 
【13】GAO A, ZOETHOUT E, STURM J M, et al. Defect formation in single layer graphene under extreme ultraviolet irradiation[J]. Applied Surface Science, 2014, 317:745-751.
 
【14】ŠLJIVANCANIN Ž, MILOŠEVIC A S, POPOVIC Z S, et al. Binding of atomic oxygen on graphene from small epoxy clusters to a fully oxidized surface[J]. Carbon, 2013, 54:482-488.
 
【15】DAI Y F, NI S, LI Z Y, et al. Diffusion and desorption of oxygen atoms on graphene[J]. Journal of Physics:Condensed Matter, 2013, 25(40):405301.
 
【16】NAIR R R, BLAKE P, GRIGORENKO A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308.
 
【17】张勇. 改性石墨烯/碳纳米管/聚酰亚胺复合材料的制备与性能研究[D]. 哈尔滨:哈尔滨工程大学, 2015.
 
【18】LIU W W, CHAI S P, MOHAMED A R, et al. Synthesis and characterization of graphene and carbon nanotubes:a review on the past and recent developments[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4):1171-1185.
 
【19】张汉宇. 石墨烯薄膜的原子氧效应研究[D]. 长春:吉林大学, 2017.
 
【20】张雯, 易敏, 沈志刚, 等. 石墨烯用于提高材料抗原子氧剥蚀性能[J]. 北京航空航天大学学报, 2014, 40(2):172-176.
 
【21】SINGH B P, JENA B K, BHATTACHARJEE S, et al. Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper[J]. Surface and Coatings Technology, 2013, 232:475-481.
 
【22】NOREEN Z, KHALID N R, ABBASI R, et al. Visible light sensitive Ag/TiO2/graphene composite as a potential coating material for control of Campylobacter jejuni[J]. Materials Science and Engineering:C, 2019, 98:125-133.
 
【23】PHAM V H, CUONG T V, HUR S H, et al. Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating[J]. Carbon, 2010, 48(7):1945-1951.
 
【24】WANG K, FENG T, QIAN M, et al. The field emission of vacuum filtered graphene films reduced by microwave[J]. Applied Surface Science, 2011, 257(13):5808-5812.
 
【25】DIKIN D A, STANKOVICH S, ZIMNEY E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature, 2007, 448(7152):457-460.
 
【26】徐博, 陈妍慧, 茹煊赫, 等. 球磨共混制备优异抗原子氧性能的氧化石墨烯/聚酰亚胺复合薄膜[J]. 复合材料学报, 2018, 35(9):2321-2327.
 
【27】MARTOCCIA D, PAULI S A, BRUGGER T, et al. H-BN on Rh(111):persistence of a commensurate 13-on-12 superstructure up to high temperatures[J]. Surface Science, 2010, 604(5/6):L9-L11.
 
【28】WAN S J, CHEN Y, WANG Y L, et al. Ultrastrong graphene films via long-chain π-bridging[J]. Matter, 2019, 1(2):389-401.
 
【29】ZHANG W, YI M, SHEN Z G, et al. Graphene-reinforced epoxy resin with enhanced atomic oxygen erosion resistance[J]. Journal of Materials Science, 2013, 48(6):2416-2423.
 
【30】SCHULTE K, VINOGRADOV N A, NG M L, et al. Bandgap formation in graphene on Ir(111) through oxidation[J]. Applied Surface Science, 2013, 267:74-76.
 
【31】LIU L, SHEN Z G, LIANG S S, et al. Enhanced atomic oxygen erosion resistance and mechanical properties of graphene/cellulose acetate composite films[J]. Journal of Applied Polymer Science, 2014, 131(11):40292.
 
【32】CHEN L, WEI F, LIU L, et al. Grafting of silane and graphene oxide onto PBO fibers:Multifunctional interphase for fiber/polymer matrix composites with simultaneously improved interfacial and atomic oxygen resistant properties[J]. Composites Science and Technology, 2015, 106:32-38.
 
【33】PENG D Q, QIN W, WU X H. Improvement of the atomic oxygen resistance of carbon fiber-reinforced cyanate ester composites modified by POSS-graphene-TiO2[J]. Polymer Degradation and Stability, 2016, 133:211-218.
 
【34】QIN S, QIU S H, CUI M J, et al. Synthesis and properties of polyimide nanocomposite containing dopamine-modified graphene oxide[J]. High Performance Polymers, 2019, 31(3):331-340.
 
【35】REN S M, CUI M J, LI Q, et al. Barrier mechanism of nitrogen-doped graphene against atomic oxygen irradiation[J]. Applied Surface Science, 2019, 479:669-678.
 
【36】BUNCH J S, VERBRIDGE S S, ALDEN J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8):2458-2462.
 
【37】SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials:past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-1271.
 
【38】SINHA RAY S, OKAMOTO M. Polymer/layered silicate nanocomposites:a review from preparation to processing[J]. Progress in Polymer Science, 2003, 28(11):1539-1641.
 
【39】CHOUDALAKIS G, GOTSIS A D. Permeability of polymer/clay nanocomposites:a review[J]. European Polymer Journal, 2009, 45(4):967-984.
 
【40】ZHANG H J, REN S M, PU J B, et al. Barrier mechanism of multilayers graphene coated copper against atomic oxygen irradiation[J]. Applied Surface Science, 2018, 444:28-35.
 
【41】SUN T, FABRIS S, BARONI S. Surface precursors and reaction mechanisms for the thermal reduction of graphene basal surfaces oxidized by atomic oxygen[J]. The Journal of Physical Chemistry C, 2011, 115(11):4730-4737.
 
【42】陈建华, 李文戈, 赵远涛, 等. 石墨烯在防腐防污涂料中的应用进展[J]. 表面技术, 2019, 48(6):89-97.
 
【43】刘宇明, 李蔓, 刘向鹏, 等. 原子氧对石墨烯膜电阻的影响[J]. 材料工程, 2017, 45(8):9-13.
 
相关信息
   标题 相关频次
 CeO2-MnO2纳米氧化物/石墨烯复合电极材料的制备及其超级电容性能
 2
 不同比表面积石墨烯对水性环氧富锌防腐蚀涂层性能的影响
 2
 不同形态二氧化钛-石墨烯复合材料的表征及光催化性能研究
 2
 长春地辛在硫化铜纳米花/石墨烯修饰玻碳电极上的电化学行为
 2
 低地球轨道环境中原子氧对空间材料的侵蚀及防护方法
 2
 管式炉燃烧-离子色谱法测定石墨烯粉体中氟、氯、溴、硫元素的含量
 2
 海洋工程结构防护涂层体系中漆膜的润湿性与抗氯离子渗透性
 2
 化学气相沉积生长石墨烯薄膜转移方法及转移用支撑材料的研究进展
 2
 基于石墨烯电极的视网膜假体有望为视网膜退化患者带来光明
 2
 基于锁相红外热成像技术的电力设备防护涂层质量检测
 2
 若干高性能高分子材料研究进展
 2
 石墨烯/二异氰酸酯/环糊精复合材料的制备及对铜(Ⅱ)测定的应用
 2
 石墨烯/聚乳酸复合材料的制备及性能
 2
 石墨烯/酶纳米复合多层膜修饰电极测定食品中的过氧化氢含量
 2
 石墨烯/生漆复合抗静电涂层的制备与性能
 2
 石墨烯-Nafion/纳米金复合物修饰玻碳电极阳极溶出伏安法测定大米中痕量锌
 2
 石墨烯薄膜对铜及镍防腐蚀性能的研究进展
 2
 石墨烯常用表征方法
 2
 石墨烯对硅酸盐富锌防腐蚀涂层性能的影响
 2
 石墨烯负载有序介孔硫化锌纳米棒复合材料的制备及光催化性能
 2
 石墨烯及石墨烯/环氧复合涂层的防腐蚀性能
 2
 石墨烯类粉体比表面积的氮气吸附法测量条件与不确定度评定
 2
 石墨烯片/聚吡咯复合材料的制备与防护性能
 2
 石墨烯添加方法对环氧涂料防腐蚀性能的影响
 2
 石墨烯添加量对无压烧结石墨烯/碳化硅陶瓷复合材料性能的影响
 2
 石墨烯在镁合金表面防护技术中的研究进展
 2
 石墨烯在生物传感器中的应用
 2
 水热法制备石墨烯及其表征
 2
 碳纳米管/石墨烯球负载纳米镍的制备及性能
 2
 铜箔形貌对石墨烯生长质量影响的表面氧化法评判
 2