扫一扫 加微信
首页 > 期刊论文 > 论文摘要
基于相关法的超低膨胀玻璃声速测量
          
Ultrasonic velocity measurement of ultra-low expansion glasses based on correlation method

摘    要
精准的声速测量对于表征超低膨胀玻璃的热膨胀特性具有重要意义,高精度的渡越时间(TOF)估计是使用时差法进行声速测量的关键。针对TOF测量精度不高导致声速测量重复性误差大的问题,提出了一种利用信号处理中的相关性原理来测量声速的方法,并用MATLAB软件进行了仿真以验证该方法的可行性。该方法利用被测试样的一次底波与二次底波具有明显关系的性质,对两次底波进行滤波去噪后计算其相关性,确定超声波在试样中的TOF。利用相关法测量了超低膨胀玻璃的声速。结果表明,相关法测得的声速与典型的峰值法测得的声速相对误差不超过0.012%,且声速测量的重复性误差小于0.1 m·s-1。因此,相关法测量超低膨胀玻璃的声速是可行且可靠的,其具有无损表征大尺寸超低膨胀玻璃热膨胀均匀性的巨大潜力。
标    签 超低膨胀玻璃   渡越时间   相关法   声速   重复性   ultra-low expansion glass   time of flight   correlation method   ultrasonic velocity   repeatability  
 
Abstract
High-precision ultrasonic velocity measurement is of great significance for characterizing the thermal expansion of ultra-low expansion glasses, and the key to ultrasonic velocity measurement problem is the time of flight (TOF) estimation. Aiming at the problem that the TOF measurement accuracy is low and the repeatability error of the ultrasonic velocity measurement is large, a method based on the correlation principle in signal processing is proposed to measure the ultrasonic velocity, and a simulation is carried out with MATLAB to verify the feasibility. This method is based on the obvious relationship between the primary and secondary bottom waves of the tested sample. After filtering and de-noising the two consecutive bottom waves, the correlation is calculated to determine the TOF of the ultrasonic waves in the tested sample. The correlation method is used to investigate the ultrasonic velocity of ultra-low expansion glasses, and the results show that the relative error between the ultrasonic velocity measured by the correlation method and that measured by the typical peak method does not exceed 0.012%, the repeatability error is 0.1 m·s-1. The correlation method is therefore feasible and reliable for ultrasonic velocity measurement and has great potential for nondestructive characterization of the thermal expansion uniformity of large ultra-low expansion glasses.

中图分类号 TB551 TG115.28   DOI 10.11973/wsjc202111002

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 国防科技工业局资助项目(TDZX-17-0004-11)

收稿日期 2021/6/7

修改稿日期

网络出版日期

作者单位点击查看

联系人作者刘红(liuh@ioe.ac.cn)

备注魏文卿(1993-),男,博士研究生,主要从事特种玻璃材料超声检测和评价技术的研究

引用该论文: WEI Wenqing,ZHANG Yuanyuan,XU Tao,RUAN Xiaoli,LIU Hong. Ultrasonic velocity measurement of ultra-low expansion glasses based on correlation method[J]. Nondestructive Testing, 2021, 43(11): 6~12
魏文卿,张媛媛,徐涛,阮晓莉,刘红. 基于相关法的超低膨胀玻璃声速测量[J]. 无损检测, 2021, 43(11): 6~12


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】SABIA R,EDWARDS M J,VANBROCKLIN R,et al.Corning 7972 ULE material for segmented and large monolithic mirror blanks[C]//Optomechanical Technologies for Astronomy. Orlando, Florida:International Society for Optics and Photonics, 2006.
 
【2】VANBROCKLIN R R,EDWARDS M J,WELLS B.Review of Corning's capabilities for ULE mirror blank manufacturing for an extremely large telescope[C]//Optomechanical Technologies for Astronomy.Orlando,Florida:International Society for Optics and Photonics, 2006.
 
【3】EDWARDS M J, BULLOCK E H, MORTON D E. Improved precision of absolute thermal expansion measurements for ULE glass[J]. Proceedings of SPIE, 1996, 2857:58-63.
 
【4】PLUMMER W A,HAGY H E.Precision thermal expansion measurements on low expansion optical materials[J].Applied Optics,1968,7(5):825-831.
 
【5】IMAI H,OKAJI M,KISHII T,et al.Measurement of thermal expansivity of low-expansion glasses by interferometric methods:Results of an interlaboratory comparison[J].International Journal of Thermophysics,1990,11(5):937-947.
 
【6】KATO R, AZUMI T, MAESONO A. Measurement of thermal expansion of low-expansion glasses by a laser interferometric thermal expansion meter[J]. High Temperatures High Pressures, 1991, 23(6):615-620.
 
【7】HAGY H E,BEST M E.Comparison of two high-precision nondestructive measurement methods for evaluating thermal expansion differences in the 8.3-m ultralow-expansion Subaru primary mirror blank[J].Applied Optics,1996,35(7):1126-1128.
 
【8】GULATI S T,HAGY H E.Theory of the narrow sandwich seal[J].Journal of the American Ceramic Society,1978,61(5/6):260-263.
 
【9】HAGY H E.High precision photoelastic and ultrasonic techniques for determining absolute and differential thermal expansion of titania-silica glasses[J].Applied Optics,1973,12(7):1440-1446.
 
【10】HAGY H E,SHIRKEY W D.Determining absolute thermal expansion of titania-silica glasses:a refined ultrasonic method[J].Applied Optics,1975,14(9):2099-2103.
 
【11】VANBROCKLIN R R, HOBBS T W, EDWARDS M J. Corning's approach to segment blank manufacturing for an extremely large telescope[J]. Proceedings of SPIE, 2004, 5494:1-8.
 
【12】BARSHAN B.Fast processing techniques for accurate ultrasonic range measurements[J].Measurement Science and Technology,2000,11(1):45-50.
 
【13】XIA N,ZHAO P,ZHANG J F,et al.Investigation of ultrasound velocity measurements of polymeric parts with different surface roughness[J].Polymer Testing,2020,81:106231.
 
【14】ZHAO P,PENG Y Y,YANG W M,et al.Crystallization measurements via ultrasonic velocity:Study of poly(lactic acid) parts[J].Journal of Polymer Science Part B:Polymer Physics,2015,53(10):700-708.
 
【15】KIM Y H,SONG S J,LEE J K.Technique for measurements of elastic wave velocities and thickness of solid plate from access on only one side[J].Japanese Journal of Applied Physics,2005,44(7A):5240-5243.
 
【16】JENOT F,OUAFTOUH M,DUQUENNOY M,et al.Corrosion thickness gauging in plates using Lamb wave group velocity measurements[J].Measurement Science and Technology,2001,12(8):1287-1293.
 
【17】CHUN-HAI H U, HAN F. Ultrasonic high-resolution flight-time measurement system[J]. Journal of Transducer Technology, 2005, 24(8):34-35,38.
 
【18】HU E Y,WANG W J.The elastic constants measurement of metal alloy by using ultrasonic nondestructive method at different temperature[J].Mathematical Problems in Engineering,2016,2016:1-7.
 
【19】ZHAO P,XIA N,ZHANG J F,et al.Measurement of molecular orientation using longitudinal ultrasound and its first application in situ characterization[J].Polymer,2020,187:122092.
 
【20】BIBER C, ELLIN S, SHENK E, et al. The Polaroid Ultrasonic Ranging System[J]. Journal of the Audio Engineering Society, 1980, 28(12):923.
 
【21】张正.高频超声显微几何测量技术研究[D].北京:北京理工大学,2016.
 
相关信息
   标题 相关频次
 Fe73.5Cu1Nb3Si13.5B9非晶薄带的磁电感效应
 2
 HTR高温环境对超声探头声学性能的影响
 2
 奥氏体不锈钢压力容器应变强化技术的发展及国外标准比较
 2
 苯并三氮唑羧酸衍生物和磷酸三丁酯的摩擦学协同性能
 2
 超高效液相色谱法测定饮料中的25种常见和新型食品添加剂
 2
 高体积分数SiCp/Al复合材料表面粉化的原因
 2
 锆管尺寸超声波测量系统的重复性和再现性分析
 2
 焊接工艺对奥氏体不锈钢焊接接头应变强化性能的影响
 2
 矩形截面扭转弹簧扭矩的预置扭矩检测法
 2
 灭弧喷口致密度的超声检测
 2
 纳米压痕试验结果的重复性和再现性
 2
 气相色谱-串联质谱法测定PM2.5中7种指示性多氯联苯和16种多环芳烃
 2
 氢化物发生-原子吸收光谱法测定中草药中铅量
 2
 全谱直读ICP-AES法测定纺织品中重金属总量
 2
 微波消解试样-火焰原子吸收光谱法测定粉煤灰中重金属元素
 2
 微波消解样品-氢化物发生-原子吸收光谱法测定苦荞中微量硒
 2
 微电网对上级电网频率及电压的支持
 2
 线性扫描伏安法测定丹参酮ⅡA
 2
 循环伏安法研究大黄素的电化学行为
 2
 一种苯胺类席夫碱对N80钢在盐酸介质中的缓蚀性能
 2
 一种三氮唑双席夫碱对N80钢在HCl介质中的缓蚀作用
 2
 仪器化压痕技术测试拉伸性能的重复性和准确性
 2
 乙醇胺溶液中Inconel690合金微动磨损与腐蚀的交互作用
 2
 以不对称席夫碱金属铜(Ⅱ)配合物为载体的硫氰酸根离子选择性电极
 2
 用方法精密度检验钛合金光谱分析标准物质的均匀性
 2
 柚皮苷的伏安行为
 2
 智能型与模拟型超声仪测量声时的对比试验
 2
 ASTM G48-11中三氯化铁点蚀试验的技术要点
 1
 LC9铝合金超声波速率和时效显微组织的关系
 1
 P92钢在超临界水中的腐蚀行为
 1