搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
激光选区熔化成形Al-Si合金高周疲劳性能的研究进展
          
Research Progress on High Cycle Fatigue Performance ofSelective Laser Melting Formed Al-Si Alloy

摘    要
激光选区熔化(SLM)成形是近年来发展最快的增材制造技术之一,在航空航天、汽车和医学等领域应用广泛。但铝合金粉末具有流动性差、激光反射率高以及热导率高等特点,导致SLM成形件表面粗糙,易形成缺陷,从而影响其疲劳性能。结合国内外对SLM成形Al-Si合金高周疲劳性能的研究现状,综述了成形方向、成形参数、热处理和表面处理对成形件高周疲劳性能的影响及高周疲劳断裂机理,总结了改善疲劳性能的方法,展望了未来SLM成形Al-Si合金疲劳性能的研究重点。
标    签 激光选区熔化   Al-Si合金   疲劳性能   影响因素   断裂机理   selective laser melting   Al-Si alloy   fatigue property   influence factor   fracture mechanism  
 
Abstract
Selective laser melting (SLM) has been one of the fastest growing additive manufacturing technologies in recent years, and is widely used in aerospace, automotive, medical and other fields. However, aluminum alloy powder has the characteristics of poor fluidity, high laser reflectivity and high thermal conductivity, resulting in rough surface of SLM forming parts and easy to form defects, which affects its fatigue properties. Based on the research status of high cycle fatigue performance of SLM Al-Si alloy at home and abroad, the influence of forming direction, forming parameters, heat treatment and surface treatment on high cycle fatigue performance and high cycle fatigue fracture mechanism are introduced, the methods of improving fatigue performance are summarized, and the research focus of SLM Al-Si alloy fatigue performance in future is prospected.

中图分类号 TG113.25+5   DOI 10.11973/jxgccl202111016

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(增材制造)

基金项目 天津市研究生科研创新项目(2019YJSS079)

收稿日期 2020/10/19

修改稿日期 2021/9/26

网络出版日期

作者单位点击查看

备注邹田春(1976-),男,吉林榆树人,副教授,博士

引用该论文: ZOU Tianchun,CHEN Minying,ZHU He. Research Progress on High Cycle Fatigue Performance ofSelective Laser Melting Formed Al-Si Alloy[J]. Materials for mechancial engineering, 2021, 45(11): 91~96
邹田春,陈敏英,祝贺. 激光选区熔化成形Al-Si合金高周疲劳性能的研究进展[J]. 机械工程材料, 2021, 45(11): 91~96


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】杨强, 鲁中良, 黄福享, 等.激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016, 59(12):26-31. YANG Q, LU Z L, HUANG F X, et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016, 59(12):26-31.
 
【2】邹田春, 欧尧, 秦嘉徐.高强铝合金增材制造技术的研究进展[J]. 热加工工艺, 2018, 47(20):34-37. ZOU T C, OU Y, QIN J X.Research development of additive manufacturing of high-strength aluminium alloy[J]. Hot Working Technology, 2018, 47(20):34-37.
 
【3】WANG Z, WU W W, QIAN G A, et al. In-situ SEM investigation on fatigue behaviors of additive manufactured Al-Si10-Mg alloy at elevated temperature[J]. Engineering Fracture Mechanics, 2019, 214:149-163.
 
【4】李帅, 李崇桂, 张群森, 等.铝合金激光增材制造技术研究现状与展望[J]. 轻工机械, 2017, 35(3):98-101. LI S, LI C G, ZHANG Q S, et al. Research status and prospect of additive manufacturing in laser by aluminum alloy[J]. Light Industry Machinery, 2017, 35(3):98-101.
 
【5】郜庆伟, 赵健, 舒凤远, 等.铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11):32-42. GAO Q W, ZHAO J, SHU F Y, et al. Research progress in aluminum alloy additive manufacturing[J]. Journal of Materials Engineering, 2019, 47(11):32-42.
 
【6】国家自然科学基金委员会工程与材料学部.机械工程学科发展战略报告:2011-2020[M].北京:科学出版社, 2010. Department of Engineering and Materials Science, National Natural Science Foundation of China. Mechanical engineering development report:2011-2020[M].Beijing:Science Press, 2010.
 
【7】顾冬冬, 戴冬华, 夏木建, 等.金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制[J]. 南京航空航天大学学报, 2017, 49(5):645-652. GU D D, DAI D H, XIA M J, et al. Cross-scale physical mechanisms for structure and performance control of metal components processed by selective laser melting additive manufacturing[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017, 49(5):645-652.
 
【8】杨永强, 王迪, 吴伟辉.金属零件选区激光熔化直接成型技术研究进展(邀请论文)[J]. 中国激光, 2011, 38(6):0601007. YANG Y Q, WANG D, WU W H.Research progress of direct manufacturing of metal parts by selective laser melting[J]. Chinese Journal of Lasers, 2011, 38(6):0601007.
 
【9】马涛, 刘婷婷, 廖文和, 等.激光选区熔化成形Ti-6Al-4V疲劳性能研究[J]. 中国激光, 2018, 45(11):1102012. MA T, LIU T T, LIAO W H, et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting[J]. Chinese Journal of Lasers, 2018, 45(11):1102012.
 
【10】袁学兵, 魏青松, 文世峰, 等.选择性激光熔化AlSi10Mg合金粉末研究[J]. 热加工工艺, 2014, 43(4):91-94. YUAN X B, WEI Q S, WEN S F, et al. Research on selective laser melting AlSi10Mg alloy powder[J]. Hot Working Technology, 2014, 43(4):91-94.
 
【11】马青娜, 邵飞, 高磊.铝合金焊接接头疲劳研究进展综述[J]. 建筑结构, 2018, 48(S2):1022-1026. MA Q N, SHAO F, GAO L.Overview of research progress of fatigue of aluminum alloy welded joints[J]. Building Structure, 2018, 48(S2):1022-1026.
 
【12】聂德键, 罗铭强, 陈文泗, 等.交通运输用铝合金材料研究进展[J]. 有色金属加工, 2016, 45(5):15-18. NIE D J, LUO M Q, CHEN W S, et al. Review of research progress of aluminum alloys for transportation[J]. Nonferrous Metals Processing, 2016, 45(5):15-18.
 
【13】RAO J H, ZHANG Y, HUANG A J, et al. Improving fatigue performances of selective laser melted Al-7Si-0.6Mg alloy via defects control[J]. International Journal of Fatigue, 2019, 129:105215.
 
【14】ABOULKHAIR N T, MASKERY I, TUCK C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting:Microstructure and nano-mechanical properties[J]. Journal of Materials Processing Technology, 2016, 230:88-98.
 
【15】CH S R, RAJA A, JAYAGANTHAN R, et al. Study on the fatigue behaviour of selective laser melted AlSi10Mg alloy[J]. Materials Science and Engineering:A, 2020, 781:139180.
 
【16】FRAZIER W E.Metal additive manufacturing:A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928.
 
【17】LI P, WARNER D H, FATEMI A, et al. Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research[J]. International Journal of Fatigue, 2016, 85:130-143.
 
【18】BONIOTTI L, BERETTA S, PATRIARCA L, et al. Experimental and numerical investigation on compressive fatigue strength of lattice structures of AlSi7Mg manufactured by SLM[J]. International Journal of Fatigue, 2019, 128:105181.
 
【19】YADOLLAHI A, SHAMSAEI N.Additive manufacturing of fatigue resistant materials:Challenges and opportunities[J]. International Journal of Fatigue, 2017, 98:14-31.
 
【20】TRIDELLO A, FIOCCHI J, BIFFI C A, et al. Effect of microstructure, residual stresses and building orientation on the fatigue response up to 109 cycles of an SLM AlSi10Mg alloy[J]. International Journal of Fatigue, 2020, 137:105659.
 
【21】李佳桂.金属粉末选择性激光熔化成形模拟及试验研究[D].武汉:华中科技大学, 2007. LI J G.Numerical simulation and experiment study on selective laser melting of metal powders[D].Wuhan:Huazhong University of Science and Technology, 2007.
 
【22】杨平华, 高祥熙, 梁菁, 等.金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21.
 
【23】宗学文, 熊聪, 张斌, 等.基于快速成型技术制造复杂金属件的研究综述[J]. 热加工工艺, 2019, 48(1):5-9. ZONG X W, XIONG C, ZHANG B, et al. Summary of research on manufacturing complex metal parts based on rapid prototyping technology[J]. Hot Working Technology, 2019, 48(1):5-9.
 
【24】谭超林, 周克崧, 马文有, 等.激光增材制造成型马氏体时效钢研究进展[J]. 金属学报, 2020, 56(1):36-52. TAN C L, ZHOU K S, MA W Y, et al. Research progress of laser additive manufacturing of maraging steels[J]. Acta Metallurgica Sinica, 2020, 56(1):36-52.
 
【25】魏娟娟, 米国发, 许磊, 等.激光增材制造铝合金及其复合材料研究进展[J]. 热加工工艺, 2019, 48(8):27-31. WEI J J, MI G F, XU L, et al. Research progress on laser additive manufacturing of aluminum alloy and its composite[J]. Hot Working Technology, 2019, 48(8):27-31.
 
【26】申琦, 余森, 牛金龙, 等.选区激光熔化制备镁基材料研究进展[J]. 材料导报, 2019, 33(增刊1):278-282. SHEN Q, YU S, NIU J L, et al. Selective laser melting of magnesium-based materials:A review[J]. Materials Reports, 2019, 33(S1):278-282.
 
【27】王锐, 赵芳芳, 万楚豪.激光选区熔化增材制造技术的研究进展[J]. 武汉船舶职业技术学院学报, 2019, 18(1):111-117. WANG R, ZHAO F F, WAN C H.Research developments of laser selective melting additive manufacturing technology[J]. Journal of Wuhan Institute of Shipbuilding Technology, 2019, 18(1):111-117.
 
【28】TANG M, PISTORIUS P C.Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94:192-201.
 
【29】NGNEKOU J N D, NADOT Y, HENAFF G, et al. Influence of defect size on the fatigue resistance of AlSi10Mg alloy elaborated by selective laser melting (SLM)[J]. Procedia Structural Integrity, 2017, 7:75-83.
 
【30】BRANDL E, HECKENBERGER U, HOLZINGER V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM):Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34:159-169.
 
【31】BEEVERS E, BRANDÃO A D, GUMPINGER J, et al. Fatigue properties and material characteristics of additively manufactured AlSi10Mg-Effect of the contour parameter on the microstructure, density, residual stress, roughness and mechanical properties[J]. International Journal of Fatigue, 2018, 117:148-162.
 
【32】ZHAO J W, EASTON M, QIAN M, et al. Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy[J]. Materials Science and Engineering:A, 2018, 729:76-85.
 
【33】边培莹, 尹恩怀.激光功率对金属激光选区熔化的熔池形貌及残余应力的影响[J/OL]. 激光与光电子学进展:(2019-07-17)[2020-04-28]. https://kns-cnki-net.webvpn.cauc.edu.cn/kcms/detail/31.1690.TN.20190717.0933.032.html. BIAN P Y, YIN E H.The morphology of molten pool and its effect on residual stress with the change of laser power during metal laser selective melting[J/OL]. Laser and Optoelectronics Progress:(2019-07-17)[2020-04-28]. https://kns-cnki-net.webvpn.cauc.edu.cn/kcms/detail/31.1690.TN.20190717.0933.032.html.
 
【34】YAN Q, SONG B, SHI Y S.Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting[J]. Journal of Materials Science & Technology, 2020, 41:199-208.
 
【35】YANG K, ROMETSCH P, JARVIS T, et al. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting[J]. Materials Science and Engineering:A, 2018, 712:166-174.
 
【36】AWD M, SIDDIQUE S, HAJAVIFARD R, et al. Comparative study of defect-based and plastic damage-based approaches for fatigue lifetime calculation of selective laser-melted AlSi12[M]//Proceedings of the 7th International Conference on Fracture Fatigue and Wear.Singapore:Springer Singapore, 2018:297-313.
 
【37】BAGHERIFARD S, BERETTA N, MONTI S, et al. On the fatigue strength enhancement of additive manufactured AlSi10Mg parts by mechanical and thermal post-processing[J]. Materials & Design, 2018, 145:28-41.
 
【38】袁广辰, 卢云, 郑学儒.T6热处理对选择性激光熔化AlSi10Mg合金组织和力学性能的影响[J]. 热加工工艺, 2021, 50(10):151-156. YUAN G C, LU Y, ZHENG X R.Effects of T6 heat treatment on microstructure and mechanical properties of selective laser melting AlSi10Mg alloy[J]. Hot Working Technology, 2021, 50(10):151-156.
 
【39】ABOULKHAIR N T, TUCK C, ASHCROFT I, et al. On the precipitation hardening of selective laser melted AlSi10Mg[J]. Metallurgical and Materials Transactions A, 2015, 46(8):3337-3341.
 
【40】ABOULKHAIR N T, MASKERY I, TUCK C, et al. Improving the fatigue behaviour of a selectively laser melted aluminium alloy:Influence of heat treatment and surface quality[J]. Materials & Design, 2016, 104:174-182.
 
【41】ZHANG C C, ZHU H H, LIAO H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116:513-522.
 
【42】UZAN N E, SHNECK R, YEHESKEL O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science and Engineering:A, 2017, 704:229-237.
 
【43】TRIDELLO A, FIOCCHI J, BIFFI C A, et al. VHCF response of Gaussian SLM AlSi10Mg specimens:Effect of a stress relief heat treatment[J]. International Journal of Fatigue, 2019, 124:435-443.
 
【44】LEON A, AGHION E.Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM)[J]. Materials Characterization, 2017, 131:188-194.
 
【45】UZAN N E, RAMATI S, SHNECK R, et al. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM)[J]. Additive Manufacturing, 2018, 21:458-464.
 
【46】MAAMOUN A H, VELDHUIS S C, ELBESTAWI M.Friction stir processing of AlSi10Mg parts produced by selective laser melting[J]. Journal of Materials Processing Technology, 2019, 263:308-320.
 
【47】SU J Q, WANG J Y, MISHRA R S, et al. Microstructure and mechanical properties of a friction stir processed Ti-6Al-4V alloy[J]. Materials Science and Engineering:A, 2013, 573:67-74.
 
【48】SANTOS MACÍAS J G, ELANGESWARAN C, ZHAO L, et al. Ductilisation and fatigue life enhancement of selective laser melted AlSi10Mg by friction stir processing[J]. Scripta Materialia, 2019, 170:124-128.
 
相关信息
   标题 相关频次
 5754铝合金钨极氩弧焊和搅拌摩擦焊接头的疲劳性能及断裂机理
 4
 激光增材制造成形316L不锈钢的研究进展
 3
 980 MPa级低碳贝氏体高强钢MAG焊接接头不同试样的拉伸断裂机理
 2
 B级铸钢与Q450NQR1钢焊接接头的组织与性能
 2
 DC03冷轧钢板断后伸长率测试结果的影响因素及其不确定度评定
 2
 DP780高强度钢MAG焊搭接接头的组织和拉剪性能
 2
 GH738高温合金涡轮机匣开裂原因
 2
 T6态7A09铝合金搅拌摩擦焊接接头的疲劳性能及组织
 2
 T700/QY8911缝合复合材料层合板的拉伸与疲劳性能
 2
 TC17钛合金圆形开孔平板试样疲劳性能差异原因
 2
 Ti-6Al-4V合金激光选区熔化材料的射线检测
 2
 TiAl基合金的拉伸疲劳断裂机理
 2
 δ相对激光选区熔化成形GH4169合金持久性能的影响
 2
 爆炸喷涂Cr3C2-NiCr涂层及其对2Cr10MoVNbN钢疲劳性能的影响
 2
 变形镁合金疲劳行为的研究现状
 2
 补焊道次对Q345B低合金钢焊接接头疲劳性能的影响
 2
 不同材料压印接头的拉剪性能和疲劳性能
 2
 差热分析曲线的影响因素
 2
 长效铜/饱和硫酸铜参比电极的研究进展
 2
 超(超)临界锅炉高温受热面氧化皮产生与剥落的影响因素及防护措施
 2
 传统工艺和激光选区熔化技术制备的Inconel 718合金在650 ℃下表面氧化膜的形成机理
 2
 对钢板拉伸试验检测精度影响因素的分析
 2
 多次激光喷丸作用下TC4钛合金的疲劳性能及微裂纹扩展预测模型
 2
 服役时间对螺旋焊缝输油管道材料力学性能的影响
 2
 杆端关节轴承杆端体的疲劳断裂机制
 2
 钢板表面热浸镀锌层的拉伸断裂机理
 2
 高强钢板拉伸试验断裂位置偏移影响因素
 2
 高强钢微冲剪试验影响因素的有限元模拟
 2
 各因素对套管内管道阴极保护影响的数值模拟
 2
 工业CT技术在激光选区熔化增材制造中的应用
 2