搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
电弧熔丝增材制造铝合金零件中气孔的研究现状
          
Research Status on Pore in Aluminum Alloy Parts by Wireand Arc Additive Manufacturing

摘    要
电弧熔丝增材制造铝合金中的气孔会产生应力集中,导致初始裂纹萌生和扩展,造成力学性能变差。介绍了电弧熔丝增材制造铝合金零件中气孔缺陷形成的原因,阐述了保护气体、焊接速度、送丝速度、金属丝材、热输入、轧制和热处理等工艺条件对气孔率的影响,并对降低电弧熔丝增材制造铝合金零件中气孔率的今后研究方向进行了展望。
标    签 电弧熔丝增材制造   铝合金   气孔     wire and arc additive manufacturing   aluminum alloy   pore   hydrogen  
 
Abstract
The stress concentration generated by the pores in aluminum alloy by wire and arc additive manufacturing leads to the initiation and propagation of initial cracks, resulting in the deterioration of mechanical properties. The porosity formation cause of aluminum alloy parts by wire and arc additive manufacturing is introduced. The effects of shielding gas, welding speed, wire feeding speed, metal wire material, heat input, rolling and heat treatment on porosity are described. The future research direction of reducing porosity in aluminum alloy parts by wire and arc additive manufacturing is prospected.

中图分类号 TG661   DOI 10.11973/jxgccl202111017

 
  中国光学期刊网论文下载说明


所属栏目 专题报道(增材制造)

基金项目 上海市大学生创新活动计划项目(202010259097)

收稿日期 2020/11/23

修改稿日期 2021/10/20

网络出版日期

作者单位点击查看

备注聂文忠(1971-),男,江西高安人,副教授,博士

引用该论文: NIE Wenzhong,ZENG Jiayi,LI Xiaoxuan,QIU Weihao. Research Status on Pore in Aluminum Alloy Parts by Wireand Arc Additive Manufacturing[J]. Materials for mechancial engineering, 2021, 45(11): 97~102
聂文忠,曾嘉艺,李晓萱,邱渭濠. 电弧熔丝增材制造铝合金零件中气孔的研究现状[J]. 机械工程材料, 2021, 45(11): 97~102


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】李权, 王福德, 王国庆, 等.航空航天轻质金属材料电弧熔丝增材制造技术[J]. 航空制造技术, 2018, 61(3):74-82. LI Q, WANG F D, WANG G Q, et al. Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2018, 61(3):74-82.
 
【2】张波, 方志刚, 李向阳, 等.铝合金船舶的腐蚀防护技术现状与展望[J]. 中国材料进展, 2014, 33(7):414-417. ZHANG B, FANG Z G, LI X Y, et al. Status and prospect of corrosion protection technology about aluminium alloy ship[J]. Materials China, 2014, 33(7):414-417.
 
【3】洪腾蛟, 董福龙, 丁凤娟, 等.铝合金在汽车轻量化领域的应用研究[J]. 热加工工艺, 2020, 49(4):1-6. HONG T J, DONG F L, DING F J, et al. Application of aluminum alloy in automotive lightweight[J]. Hot Working Technology, 2020, 49(4):1-6.
 
【4】URIONDO A, ESPERON-MIGUEZ M, PERINPANAYAGAM S.The present and future of additive manufacturing in the aerospace sector:A review of important aspects[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(11):2132-2147.
 
【5】MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672):365-369.
 
【6】ZHANG Y B, XU J H, ZHAI T G.Distributions of pore size and fatigue weak link strength in an A713 sand cast aluminum alloy[J]. Materials Science and Engineering:A, 2010, 527(16/17):3639-3644.
 
【7】MAYER H, PAPAKYRIACOU M, ZETTL B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys[J]. International Journal of Fatigue, 2003, 25(3):245-256.
 
【8】BOEIRA A P, FERREIRA I L, GARCIA A.Alloy composition and metal/mold heat transfer efficiency affecting inverse segregation and porosity of as-cast Al-Cu alloys[J]. Materials & Design, 2009, 30(6):2090-2098.
 
【9】ANYALEBECHI P N.Hydrogen-induced gas porosity formation in Al-4.5 wt% Cu-1.4 wt% Mg alloy[J]. Journal of Materials Science, 2013, 48(15):5342-5353.
 
【10】DA SILVA C L M, SCOTTI A.The influence of double pulse on porosity formation in aluminum GMAW[J]. Journal of Materials Processing Technology, 2006, 171(3):366-372.
 
【11】KAUFMAN J G, ROOY E L.Aluminum alloy castings[M].[S.l.]:ASM International, 2004.
 
【12】GU J L, WANG X S, BAI J, et al. Deformation microstructures and strengthening mechanisms for the wire+arc additively manufactured Al-Mg4.5Mn alloy with inter-layer rolling[J]. Materials Science and Engineering:A, 2018, 712:292-301.
 
【13】GENG H B, LI J L, XIONG J T, et al. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts[J]. Journal of Materials Engineering and Performance, 2017, 26(2):621-629.
 
【14】GU J L, DING J L, WILLIAMS S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering:A, 2016, 651:18-26.
 
【15】WILLIAMS S W, MARTINA F, ADDISON A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7):641-647.
 
【16】PANCHENKO O, KURUSHKIN D, MUSHNIKOV I, et al. A high-performance WAAM process for Al-Mg-Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed[J]. Materials & Design, 2020, 195:109040.
 
【17】MIAO Q Y, WU D J, CHAI D S, et al. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing[J]. Materials & Design, 2020, 186:108205.
 
【18】SU C C, CHEN X Z, GAO C, et al. Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM[J]. Applied Surface Science, 2019, 486:431-440.
 
【19】SUN R J, LI L H, ZHU Y, et al. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening[J]. Journal of Alloys and Compounds, 2018, 747:255-265.
 
【20】LI S, ZHANG L J, NING J, et al. Comparative study on the microstructures and properties of wire+arc additively manufactured 5356 aluminium alloy with argon and nitrogen as the shielding gas[J]. Additive Manufacturing, 2020, 34:101206.
 
【21】DING J, COLEGROVE P, MARTINA F, et al. Development of a laminar flow local shielding device for wire + arc additive manufacture[J]. Journal of Materials Processing Technology, 2015, 226:99-105.
 
【22】许良红, 田志凌, 张晓牧, 等.保护气体对高强铝合金的焊缝组织及气孔敏感性的影响[J]. 焊接学报, 2006, 27(12):69-73. XU L H, TIAN Z L, ZHANG X M, et al. Effects of shielding gas on microstructure and number of gas pore in high strength aluminum alloys weld[J]. Transactions of the China Welding Institution, 2006, 27(12):69-73.
 
【23】NUÑEZ E E N, UNFRIED SILGADO J, TORRES SALCEDO J E, et al. Influence of gas mixtures Ar-He and Ar-He-O2 on weldability of aluminum alloy AA5083-O using automated GMAW-P[J]. Welding International, 2016, 30(6):423-431.
 
【24】JURI AĆG I, GARA AŠG I AĆG I, BU AŠG I AĆG M, et al. Influence of shielding gas composition on structure and mechanical properties of wire and arc additive manufactured inconel 625[J]. JOM, 2019, 71(2):703-708.
 
【25】RYAN E M, SABIN T J, WATTS J F, et al. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319[J]. Journal of Materials Processing Technology, 2018, 262:577-584.
 
【26】GU J L, DING J L, CONG B Q, et al. The influence of wire properties on the quality and performance of Wire+Arc additive manufactured aluminium parts[J]. Advanced Materials Research, 2014, 1081:210-214.
 
【27】ANYALEBECHI P N.Analysis of the effects of alloying elements on hydrogen solubility in liquid aluminum alloys[J]. Scripta Metallurgica et Materialia, 1995, 33(8):1209-1216.
 
【28】TODA H, HIDAKA T, KOBAYASHI M, et al. Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure[J]. Acta Materialia, 2009, 57(7):2277-2290.
 
【29】CONG B Q, QI Z W, QI B J, et al. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process[J]. Applied Sciences, 2017, 7(3):275.
 
【30】AZANAS P, DEHERKAR P, ALMEIDA P, et al. Fabrication of geometrical features using wire and arc additive manufacture[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(6):1042-1051.
 
【31】ZHOU Y H, LIN X, KANG N, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science & Technology, 2020, 37:143-153.
 
【32】WANG P, HU S S, SHEN J Q, et al. Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy[J]. Journal of Materials Processing Technology, 2017, 245:122-133.
 
【33】JIANG G R, LIU Y, LI Y X.A model for calculating hydrogen solubility in molten aluminum alloys[J]. Acta Metallurgica Sinica, 2008, 44(2):129-133.
 
【34】DEREKAR K S, ADDISON A, JOSHI S S, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1/2):311-331.
 
【35】KOU S, LE Y. Nucleation mechanism and grain refining of weld metal[J]. Welding Journal, 1986, 65(12):65-70.
 
【36】YUNJIA H, FROST R H, OLSON D L, et al. Grain refinement of aluminum weld metal[J]. Welding Research Supplement, 1989, 7:280-289.
 
【37】GUO X M, YAND C G, QIAN B N, et al. Effects of inoculants Ti and Zr on the microstructures and properties of 2219 Al-Cu alloy welds[J]. Acta Metall Sinica, 2005, 41(4):397-401.
 
【38】LI K D, CHANG E.Mechanism of nucleation and growth of hydrogen porosity in solidifying A356 aluminum alloy:An analytical solution[J]. Acta Materialia, 2004, 52(1):219-231.
 
【39】WANG S, GU H M, WANG W, et al. The influence of heat input on the microstructure and properties of wire-arc-additive-manufactured Al-Cu-Sn alloy deposits[J]. Metals, 2020, 10(1):79.
 
【40】WANG D H, LU J P, TANG S Y, et al. Reducing porosity and refining grains for arc additive manufacturing aluminum alloy by adjusting arc pulse frequency and current[J]. Materials, 2018, 11(8):1344.
 
【41】WU Q R, MA Z S, CHEN G S, et al. Obtaining fine microstructure and unsupported overhangs by low heat input pulse arc additive manufacturing[J]. Journal of Manufacturing Processes, 2017, 27:198-206.
 
【42】CONG B Q, DING J L, WILLIAMS S.Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(9/10/11/12):1593-1606.
 
【43】PAL K, PAL S K.Effect of pulse parameters on weld quality in pulsed gas metal arc welding:A review[J]. Journal of Materials Engineering and Performance, 2011, 20(6):918-931.
 
【44】HARWIG D D, DIERKSHEIDE J E, YAPP D, et al. Arc behavior and melting rate in the VP-GMAW process[J]. Welding Journal, 2006, 85(3):52-62.
 
【45】AYARKWA K F, WILLIAMS S, DING J.Investigation of pulse advance cold metal transfer on aluminium wire arc additive manufacturing[J]. International Journal of Rapid Manufacturing, 2015, 5(1):44.
 
【46】GU J L, DING J L, WILLIAMS S W, et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. Journal of Materials Processing Technology, 2016, 230:26-34.
 
【47】BOND G M, ROBERTSON I M, BIRNBAUM H K.The influence of hydrogen on deformation and fracture processes in high-strength aluminum alloys[J]. Acta Metallurgica, 1987, 35(9):2289-2296.
 
【48】ALBRECHT J, BERNSTEIN I M, THOMPSON A W.Evidence for dislocation transport of hydrogen in aluminum[J]. Metallurgical Transactions A, 1982, 13(5):811-820.
 
【49】TODA H, MINAMI K, KOYAMA K, et al. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation[J]. Acta Materialia, 2009, 57(15):4391-4403.
 
【50】FIXTER J, GU J, DING J, et al. Preliminary investigation into the suitability of 2xxx alloys for wire-arc additive manufacturing[J]. Materials Science Forum, 2016, 877:611-616.
 
【51】COLEGROVE P A, COULES H E, FAIRMAN J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10):1782-1791.
 
【52】MCPHERSON J W.A model for stress-induced metal notching and voiding in very large-scale-integrated Al-Si (1%) metallization[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures, 1987, 5(5):1321.
 
【53】GU J L, YANG S L, GAO M J, et al. Micropore evolution in additively manufactured aluminum alloys under heat treatment and inter-layer rolling[J]. Materials & Design, 2020, 186:108288.
 
【54】SU H, BHUIYAN S, TODA H, et al. Influence of intermetallic particles on the initiation and growth behavior of hydrogen micropores during high-temperature exposure in Al-Zn-Mg-Cu aluminum alloys[J]. Scripta Materialia, 2017, 135:19-23.
 
【55】QI Z W, QI B J, CONG B Q, et al. Microstructure and mechanical properties of wire + arc additively manufactured 2024 aluminum alloy components:As-deposited and post heat-treated[J]. Journal of Manufacturing Processes, 2019, 40:27-36.
 
【56】GU J L, GAO M J, YANG S L, et al. Microstructure, defects, and mechanical properties of wire+arc additively manufactured AlCu4.3-Mg1.5 alloy[J]. Materials & Design, 2020, 186:108357.
 
【57】GU J L, YANG S L, GAO M J, et al. Influence of deposition strategy of structural interface on microstructures and mechanical properties of additively manufactured Al alloy[J]. Additive Manufacturing, 2020, 34:101370.
 
相关信息
   标题 相关频次
 铝合金焊缝超声波检测工艺参数的选择
 3
 2124铝合金超厚板热轧过程温度场的数值模拟
 2
 2A02铝合金过烧组织特征及金相检验技术的改进
 2
 2A12铝合金当量加速腐蚀试验
 2
 2A12铝合金微弧氧化陶瓷层的电化学腐蚀行为
 2
 2A14铝合金去应力热时效的作用
 2
 2A50铝合金钎焊钎料与钎剂的选择
 2
 3104铝合金织构的X射线衍射法测试误差
 2
 34CrMo1A钢转子内部缺陷分析
 2
 350 MW亚临界机组T91钢再热器管泄漏失效分析
 2
 38CrMoAl钢表面不同厚度搪瓷涂层的组织和性能
 2
 3A12、5052、6063铝合金在沿海大气环境中的腐蚀行为
 2
 5083/6063不等厚铝合金双丝CMT角焊接头的组织与性能
 2
 5252H32铝合金维氏硬度试验的测量不确定度评定
 2
 5A06铝合金超薄板交流冷金属过渡焊接头的组织与拉伸性能
 2
 6 mm厚铝合金板激光搭接焊T型接头焊缝的成形性能
 2
 6000系铝合金薄壁结构压缩断裂行为的有限元模拟
 2
 6061铝合金的动态拉伸性能及其本构模型
 2
 6061铝合金激光填丝焊接接头的组织与力学性能
 2
 6061铝合金汽车保险杠横梁的碰撞性能
 2
 6063铝合金挤压型材尺寸超差分析及模具优化设计
 2
 6063铝合金阳极氧化过程中麻点问题分析
 2
 6063铝合金中框侧面亮线原因分析
 2
 6082T6铝合金自动焊接工艺参数的选择
 2
 6N01铝合金中厚板三点弯曲变形行为的数值模拟
 2
 7050铝合金表面氧化膜厚度对其搅拌摩擦焊焊接接头性能的影响
 2
 7075/6009铝合金层状复合板材的固溶时效热处理工艺
 2
 7075-T6包铝材料电导率测试分析和处理
 2
 718钢模块内部缺陷产生原因
 2
 7A85铝合金承载构件断裂原因
 2