搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
高温消解-分光光度法测定稠油采出水中5种硅形态的含量
          
Determination of 5 Morphologies of Silicon in Produced Water of Heavy Oil by Spectrophotometry after High Temperature Digestion

摘    要
基于硅钼黄法,以高温消解-分光光度法测定稠油采出水中活性硅、胶体硅、吸附硅、溶解性有机硅、颗粒硅等5种硅形态的含量(均以二氧化硅计)。取水样10.00 mL,分别按照以下步骤试验:①水样过聚四氟乙烯(PTFE)滤头,加入盐酸溶液,并用400 g·L-1四水合酒石酸钾钠溶液1 mL和250 g·L-1一水合草酸钾溶液1 mL掩蔽Fe3+和PO43-的干扰(总铁和总磷质量分别小于3 000,250 μg时适用),在试验组中加入仲钼酸铵用于显色反应(色度补偿组加入氯化铵),以水为参比,在400 nm处测定显色体系吸光度,以试验组和色度补偿组吸光度差值计算目标吸光度,并以此计算活性硅的质量浓度(ρ1);②水样过PTFE滤头,加入氢氟酸(将水中胶体硅分解为活性硅),在水热釜中于100℃消解20 min,加入氯化铝,用于消除多余F-,洗涤后定容,后续检测步骤同①,所得结果(ρ2)与ρ1的差值即为胶体硅的质量浓度;③水样不过滤,直接按照②提供的方法进行前处理和检测,所得结果(ρ3)与ρ2的差值即为吸附硅的质量浓度;④在水样中加入氢氟酸和过硫酸钠(将水样中溶解性有机硅消解为活性硅),在水热釜中于120℃消解30 min,加入氯化铝,洗涤后定容,后续检测步骤同①,所得结果(ρ4)与ρ3的差值即为溶解性有机硅的质量浓度;⑤在水样中加入氢氧化钠(用于消解水样中颗粒硅和胶体硅)和过硫酸钠,在水热釜中于200℃消解120 min,加入硫酸,洗涤后定容,后续检测步骤同①,所得结果(ρ5)与ρ4的差值即为颗粒硅的质量浓度。二氧化硅基准物质配制的标准溶液系列经干扰掩蔽、消解、显色处理后检测,所得硅(以二氧化硅计)的质量均在500~5 000 μg内与其对应的吸光度呈线性关系,硅(以二氧化硅计)的检出限为4.0~7.1 mg·L-1。分别在实验室内和实验室间对硅标准溶液进行精密度和准确度试验,实验室内和实验室间总硅测定值的相对标准偏差(n=5)分别为0.85%~4.5%和2.1%~5.0%,相对误差分别为-7.4%~0.47%和-4.5%~-1.7%,回收率为95.8%~96.8%。方法用于实际样品的分析,活性硅含量占总硅的比例为94%~97%,建议以化学沉淀法去除稠油采出水中的硅杂质。
标    签 高温消解   分光光度法   硅形态   稠油采出水   high temperature digestion   spectrophotometry   morphology of silicon   produced water of heavy oil  
 
Abstract
Based on Si-Mo yellow method, the method for determination of 5 morphologies of silicon (calculated as SiO2), including active silicon, colloidal silicon, adsorbed silicon, dissolved organic silicon and granular silicon in the produced water of heavy oil was proposed by spectrophotometry after high temperature digestion. The water sample (10.00 mL) was taken and tested by the following steps, respectively. ① Water sample was passed through PTFE filter, and mixed with hydrochloric acid. In the above solution, 400 g·L-1 sodium potassium tartrate tetrahydrate solution of 1 mL and 250 g·L-1 potassium oxalate monohydrate solution of 1 mL were added to mask the interference of Fe3+ and PO43- (suitable when the mass of total Fe3+ and P were less than 3 000, 250 μg, respectively). In the experimental group, ammonium paramolybdate was used for color reaction (ammonium chloride was added in the chroma compensation group). With water as reference, the absorbance of the color system was measured at 400 nm. The target absorbance was calculated by the absorbance difference between the experimental group and the chroma compensation group, and the mass concentration of active silicon (ρ1) was calculated based on the target absorbance. ② Water sample was passed through PTFE filter, hydrofluoric acid was added to decompose colloidal silicon in water into active silicon, and the above solution was digested in a hydrothermal kettle at 100 ℃ for 20 min. After aluminum chloride was added to eliminate excess F-, the mixed solution was washed, diluted, and done as follow-up steps with ①. The mass concentration of colloidal silicon was obtained by difference between the result (ρ2) and ρ1. ③ Water sample was not filtered, and directly pretreated and detected in accordance with the method provided by ②. The mass concentration of adsorbed silicon was obtained by the difference between the result (ρ3) and ρ2. ④ Hydrofluoric acid and sodium persulfate for digesting dissovled organic silicon to active silicon were added to the water sample, and the mixed solution was digested at 120 ℃ for 30 min in a hydrothermal kettle. The solution obtained was mixed with aluminum chloride, washed, diluted, and done as follow-up steps with ①. The mass concentration of dissolved organic silicon was obtained by the difference between the result (ρ4) and ρ3. ⑤ Sodium hydroxide (for digestion of granular silicon and colloidal silicon) and sodium persulfate were added to the water sample, and the mixed solution was digested at 200 ℃ for 120 min in a hydrothermal kettle. The solution obtained was mixed with sulfuric acid washed, diluted, and done as follow-up steps with ④. The mass concentration of granular silicon was obtained by the difference between the result (ρ5) and ρ4. The series of standard solutions prepared by SiO2 datum chemical reagent were detected after treatments with interference masking, digestion and color reaction, and linear relationships obtained between mass of silicon (calculated as SiO2) and its corresponding absorbance were kept in the range of 500-5 000 μg, with detection limits of silicon (calculated as SiO2) in the range of 4.0-7.1 mg·L-1. Tests for accuracy and precision were made on standard solution of silicon at intra-and inter-laboratory. RSDs (n=5) of the determined values of the total silicon from intra-laboratory and inter-laboratory were found in the range of 0.85%-4.5% and 2.1%-5.0%, relative errors were in the range of -7.4%-0.47% and -4.5%--1.7%. Values of test for spiked recovery ranged from 95.8% to 96.8%. The proposed method was applied to the analysis of actual samples, with the contents of active silicon accounted for 94%-97% of that of the total silicon, and it was suggested to remove silicon impurities in the produced water of heavy oil by chemical precipitation.

中图分类号 O657.32   DOI 10.11973/lhjy-hx202202009

 
  中国光学期刊网论文下载说明


所属栏目 工作简报

基金项目 电化学与大直径陶瓷膜组合处理稠油采出水技术研究(20190505020300)

收稿日期 2020/11/27

修改稿日期

网络出版日期

作者单位点击查看


备注白昱,博士研究生,主要从事电化学水处理技术和污染物检测方法开发方面的研究

引用该论文: BAI Yu,ZHOU Lü,MA Keke,CAO Zhi,JIN Zhina,SUN Sen. Determination of 5 Morphologies of Silicon in Produced Water of Heavy Oil by Spectrophotometry after High Temperature Digestion[J]. Physical Testing and Chemical Analysis part B:Chemical Analysis, 2022, 58(2): 173~180
白昱,周律,马可可,曹智,金志娜,孙森. 高温消解-分光光度法测定稠油采出水中5种硅形态的含量[J]. 理化检验-化学分册, 2022, 58(2): 173~180


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】KLOTZBVCHER T, MARXEN A, JAHN R, et al. Silicon cycle in rice paddy fields:Insights provided by relations between silicon forms in topsoils and plant silicon uptake[J]. Nutrient Cycling in Agroecosystems, 2016,105(2):157-168.
 
【2】高绘文,吴建富.水稻土供硅特性研究进展[J].南方农业, 2018,12(27):189-190.
 
【3】王诗诚.铁、硅元素对城市河道优势藻的抑制作用研究[D].北京:中国地质大学, 2020.
 
【4】VILLEGAS-MENDOZA I E, MARTIN-DOMINGUEZ A, PEREZ-CASTREJON S, et al. Electrocoagulation to remove silica from cooling towers water[J]. Tecnología y Ciencias del Agua, 2014,5(3):41-50.
 
【5】国家能源局.稠油注汽系统设计规范:SY/T 0027-2014[S].北京:石油工业出版社, 2015.
 
【6】中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.城市污水再生利用工业用水水质:GB/T 19923-2005[S].北京:中国标准出版社, 2005.
 
【7】中国石油天然气集团公司.油田污水回用湿蒸发器水质指标:Q/SY 1275-2010[S].北京:石油工业出版社, 2010.
 
【8】ZHI S L, ZHANG S T, LU X B. Removal of silica from cooling water by electrocoagulation:A comprehensive and systematic study using response surface methodology[J]. Asian Journal of Chemistry, 2013,25(16):9309-9314.
 
【9】马晓雁,庞维海,李青松,等.稠油废水混凝法除硅工艺研究[J].给水排水, 2008,34(11):183-186.
 
【10】孔殿超,崔杜军,张青,等.典型白炭黑工业园区废水的混凝沉淀试验研究[J].绿色科技, 2021,23(4):64-67.
 
【11】程志声,刘淑习,华宁熙.芦苇在硫酸盐蒸煮过程中硅的脱除特点[J].中国造纸学报, 1988,3(0):8-19.
 
【12】CHUANG S H, CHANG T C, OUYANG C F, et al. Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park[J]. Water Science and Technology, 2007,55(1/2):187-195.
 
【13】刘良栋,雷琼,蔡遥.絮凝沉淀+Fenton法处理有机硅废水工艺研究[J].能源与环境, 2020(6):94-95.
 
【14】张扬,闫晗,柳丽芬,等.半导体含硅废水形成动态膜的影响因素研究[J].中国给水排水, 2013,29(5):90-93.
 
【15】薛京昌,王洪昌,刘肖,等.多种离子色谱法检测矿泉水中的硅酸盐[J].现代科学仪器, 2011(4):78-81.
 
【16】潘春秀,王伟,李德军,等.电感耦合等离子体原子发射光谱法同时测定球墨铸铁用稀土镁球化剂中硅、镁、钙、锰、铝、钛及稀土总量[J].理化检验-化学分册, 2019,55(2):227-230.
 
【17】中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.工业循环冷却水和锅炉用水中硅的测定:GB/T 12149-2017[S].北京:中国标准出版社, 2017.
 
【18】黄报亮,邓金花,秦惠,等.分光光度法快速测定水中氰尿酸[J].理化检验-化学分册, 2020,56(10):1134-1136.
 
【19】钱慧娟,侯志峰,高清河,等.硅钼黄和硅钼蓝测定三元复合驱采出水中硅的比较[J].广州化工, 2013,41(11):152-153.
 
【20】苏鑫,尹本涛,蔡元青,等.化学检测实验室内部质量控制方法及结果评价探讨[J].理化检验-化学分册, 2020,56(4):459-464.
 
相关信息
   标题 相关频次
 1,2-萘醌-4-磺酸钠分光光度法测定药品中赖氨酸
 2
 1-丁基-3-甲基咪唑盐酸盐-正丙醇与磷酸氢二钾双水相萃取-分光光度法测定阿奇霉素
 2
 1-羟基芘与牛血清白蛋白的相互作用
 2
 2,3,7-三羟基-9-水杨基荧光酮分光光度法测定痕量铌
 2
 2,4-二硝基苯酚荷移反应分光光度法测定罗红霉素
 2
 4,5-二甲基-2-噻唑偶氮重氮氨基偶氮苯固相萃取-分光光度法测定银
 2
 5′-硝基水杨基荧光酮分光光度法测定钼
 2
 Cu(Ⅱ)为探针-分光光度法测定半胱氨酸
 2
 Emerson试剂分光光度法测定头孢羟氨苄
 2
 Fe3+催化二苯胺磺酸钠显色-分光光度法测定消毒液中过氧化氢
 2
 K系数分光光度法同时测定钴矿中铜、钴、镍
 2
 LM-BP-ANN算法应用于分光光度法同时测定治感冒药的4种组分
 2
 L-苏氨酸与四氯对苯醌的荷移反应
 2
 Pt/SiO2-Al2O3催化剂中铂含量测定的方法
 2
 SPSS软件用于分光光度法的数据处理
 2
 吖啶黄与脱氧核糖核酸加成反应机理及其在微量DNA测定中的应用
 2
 埃尔利希试剂分光光度法测定红花籽中血清素衍生物
 2
 氨基黑10B褪色光度法测定两种阳离子表面活性剂及其作用机理
 2
 氨基酸-乙酰丙酮分光光度法测定水样中甲醛
 2
 百里酚蓝分光光度法测定阿昔洛韦及其反应机理
 2
 变色酸与牛血清白蛋白的相互作用
 2
 薄层色谱-可见分光光度法测定腮红及眼影中苏丹红
 2
 卟啉吡啶季铵盐分光光度法测定水中痕量铜
 2
 不同类型的捕捉剂在分光光度法测定羟自由基中的应用
 2
 藏红T分光光度法测定醇醚羧酸盐初级生物降解率
 2
 长光程比色池-分光光度法直接测定地表水中挥发酚
 2
 超声提取-分光光度法测定大黄中总蒽醌类化合物
 2
 单晶硅原料中铝的分离和测定
 2
 电荷转移分光光度法测定阿莫西林
 2
 靛蓝二磺酸钠褪色分光光度法测定水中臭氧
 2