搜索热:失效分析 陶瓷
扫一扫 加微信
首页 > 期刊论文 > 论文摘要
不同粒径软磁颗粒掺杂磁敏弹性体的磁致电导特性
          
Magnetoconductance Characteristics of Magnetic-Sensitive Elastomer Doped with Soft Magnetic Particles with Different Particle Sizes

摘    要
以磁化硅橡胶为基体,在有磁场和无磁场条件下制备了多种组分微米级(粒径5~8μm)和亚微米级(粒径200 nm)软磁颗粒掺杂的磁敏弹性体(MSE)试样,通过电导试验装置和磁致电导测试系统研究了不同MSE试样的磁致电导特性,探究磁致电导机理。结果表明:在有磁场条件下制备微米级颗粒填充的MSE的磁致电导特性随着颗粒含量的增加而显著增强;随着亚微米级颗粒掺杂量的增加,在有磁场条件下制备微米级和亚微米级颗粒掺杂的MSE中微米与亚微米颗粒间产生吸附效应,零场电导与磁致电导增加值均大幅度衰减,磁致电导特性较弱;在无磁场条件下制备不同粒径颗粒掺杂的MSE中无法形成有效导电通道,磁致电导特性明显低于在有磁场条件下制备相同含量颗粒掺杂MSE。
标    签 磁敏弹性体   颗粒掺杂   磁致电导   导电通道   magneto-sensitive elastomer   particle doping   magnetoconductance   conductive channel  
 
Abstract
Taking vulcanized silicone rubber as matrix, the magnetic-sensitive elastomer(MSE) samples with various compositions of micron(particle size of 5-8 μm) and submicron(particle size of 200 nm) soft magnetic particles were prepared under conditions with magnetic field and without magnetic field, and the magneto-conductance characteristics of MSE samples were studied by conductance device and magnetic field-dependent conductance test system. The mechanism of magnetoconductance was explored. The results show that the magnetoconductance of MSE filled with micron particles under preparation condition with magnetic field increased significantly with increasing particle doping content. With increasing doping content of submicron particles, under the condition of magnetic field preparation, the adsorption effect occurred between micron and submicron particles in MSE doped with micron and submicron particles, the increase values of zero-field conductance and magnetoconductance decreased greatly, and the magnetoconductance property became weak. The different size particle-doped MSE under preparation condition without magnetic field could not form an effective conductive channel, and the magnetoconductance characteristics were significantly lower than those of the same content particle-doped MSE under preparation condition with magnetic field.

中图分类号 O631   DOI 10.11973/jxgccl202202002

 
  中国光学期刊网论文下载说明


所属栏目 试验研究

基金项目 重庆市自然科学基金面上资助项目(cstc2019jcyj-msxmX0005)

收稿日期 2021/1/4

修改稿日期 2021/12/21

网络出版日期

作者单位点击查看

备注居本祥(1983-),男,安徽六安人,副教授,博士

引用该论文: JU Benxiang,ZHUANG Qiuhui. Magnetoconductance Characteristics of Magnetic-Sensitive Elastomer Doped with Soft Magnetic Particles with Different Particle Sizes[J]. Materials for mechancial engineering, 2022, 46(2): 10~14
居本祥,庄秋慧. 不同粒径软磁颗粒掺杂磁敏弹性体的磁致电导特性[J]. 机械工程材料, 2022, 46(2): 10~14


论文评价
共有人对该论文发表了看法,其中:
人认为该论文很差
人认为该论文较差
人认为该论文一般
人认为该论文较好
人认为该论文很好
分享论文
分享到新浪微博 分享到腾讯微博 分享到人人网 分享到 Google Reader 分享到百度搜藏分享到Twitter

参考文献
【1】汪建晓,孟光.磁流变弹性体研究进展[J].功能材料,2006,37(5):706-709.WANG J X,MENG G.Research advances in magnetorheological elastomers[J].Journal of Functional Materials,2006,37(5):706-709.
 
【2】BELLELLI A, SPAGGIARI A. Magneto-mechanical characterization of magnetorheological elastomers[J].Journal of Intelligent Material Systems and Structures,2019,30(17):2534-2543.
 
【3】BASTOLA A K,LI L.A new type of vibration isolator based on magnetorheological elastomer[J].Materials & Design,2018,157:431-436.
 
【4】LENG D X,SUN S L,XU K,et al. A physical model of magnetorheological elastomer isolator and its dynamic analysis[J].Journal of Intelligent Material Systems and Structures,2020,31(9):1141-1156.
 
【5】XU Z B,GONG X L,LIAO G J,et al.An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber[J].Journal of Intelligent Material Systems and Structures,2010,21(10):1039-1047.
 
【6】邓益民,叶伟强,王威.基于磁流变弹性体导电机理的压阻特性理论模型研究[J].机械制造,2011,49(5):26-29.DENG Y M,YE W Q,WANG W.Research on theoretical models of piezoresistivity of magnetorheological elastomer based on its electric conduction mechanism[J].Machinery,2011,49(5):26-29.
 
【7】BICA I.The influence of the magnetic field on the elastic properties of anisotropic magnetorheological elastomers[J].Journal of Industrial and Engineering Chemistry,2012,18(5):1666-1669.
 
【8】BICA I.The influence of hydrostatic pressure and transverse magnetic field on the electric conductivity of the magnetorheological elastomers[J].Journal of Industrial and Engineering Chemistry,2012,18(1):483-486.
 
【9】BOSSIS G,ABBO C,CUTILLAS S,et al.Electroactive and electrostructured elastomers[J].International Journal of Modern Physics B,2001,15(6):564-573.
 
【10】KCHIT N,LANCON P,BOSSIS G.Thermoresistance and giant magnetoresistance of magnetorheological elastomers[J].Journal of Physics D:Applied Physics,2009,42(10):105506.
 
【11】TIAN T F,LI W H,ALICI G,et al.Microstructure and magnetorheology of graphite-based MR elastomers[J].Rheologica Acta,2011,50(9/10):825-836.
 
【12】GE L,GONG X L,WANG Y,et al.The conductive three dimensional topological structure enhanced magnetorheological elastomer towards a strain sensor[J].Composites Science and Technology,2016,135:92-99.
 
【13】GE L,XUAN S H,LIAO G J,et al.Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties[J].Smart Materials and Structures,2015,24(3):037001.
 
【14】TAO H,XUAN S H,DING L,GONG X L.Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer[J].Materials and Design,2018,156:528-537.
 
【15】GÜNTHER D,YU BORIN D,GÜNTHER S,et al.X-ray micro-tomographic characterization of field-structured magnetorheological elastomers[J].Smart Materials and Structures,2012,21(1):015005.
 
【16】ZHANG J Y,PANG H M,WANG Y,et al.The magneto-mechanical properties of off-axis anisotropic magnetorheological elastomers[J].Composites Science and Technology,2020,191:108079.
 
【17】廖干良,廖昌荣,文慧,等.磁致链化对磁流变弹性体压阻效应的影响[J].复合材料学报,2017,34(9):2085-2092.LIAO G L,LIAO C R,WEN H,et al.Effects of particle pre-orientation via application of magentic field on the piezoresistivity of magnetorheological elastomer[J].Acta Materiae Compositae Sinica,2017,34(9):2085-2092.
 
【18】滕桂荣,朱绪力,孙朝阳,等.磁流变弹性体的导电机理分析[J].功能材料,2015,46(22):22045-22048.TENG G R,ZHU X L,SUN Z Y,et al.Analysis on conductive mechanism of magnetorheological elastomers[J].Journal of Functional Materials,2015,46(22):22045-22048.
 
相关信息
   标题 相关频次
无相关信息...